Learned Binocular-Encoding Optics for RGBD Imaging
Using Joint Stereo and Focus Cues

Supplementary Material

A. Details of Image Formation
A.l. Differentiable Propagation Modeling

As mentioned in Section 3.1 and shown in Figure 1 of the
main text, we approximate the optical system of each cam-
era with a model consisting of a thin lens, a DOE, and an
aperture stop, all co-located at the same plane. This model
approximates our physical prototype, in which the DOE and
aperture stop are placed in the pupil plane of a compound
lens. The approximation is valid under two assumptions:
(1) the compound lens is well-corrected, i.e., its optical
aberrations are negligible; and (2) the magnification of the
pupil plane by the lens is accounted for in the model. For
the latter issue, we note that we have experimentally verified
that the Nikon lens in our setup offers close to unit magnifi-
cation of the pupil plane; i.e., the entrance pupil is approxi-
mately 1.03 times the diameter of the physical aperture stop.
Due to the small magnification factor and the measurement
uncertainty, we therefore design our DOE with unit mag-
nification, and rely on network fine-tuning (Section D.1) to
compensate for the deviation.

With this in mind, we now derive the details for the sim-
plified model using a co-located thin lens. As in most cam-
era systems, the point spread function (PSF) for our optical
system is depth-dependent. In this work, we empirically fo-
cus the lens at a nominal distance of 1.23m, given the target
scene depth range from 0.67m to 8m, which is equivalent to
1.4 diopter.

Our optical modeling of the PSF begins with a point
source placed in front of the camera system. At each depth,
the point source generates a spherical wave. Upon the ar-
rival of the wavefront at the Lens-Aperture-DOE plane, the
wavefront can be expressed as:
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where A( denotes the amplitude of the input light, & =
27 /X is the wave number related to wavelength )\, and
(z',1y’) represents the 2D spatial coordinates at the Lens-
Aperture-DOE plane, z indicates the distance from the point
source and aperture center.

According to the simplified model, the light wave first
encounters a thin lens, which is responsible for focusing the
image and allows the DOE to undertake the optimized en-
coding operation independently. Thus, the phase delay A¢ ¢
introduced by the lens with the focal length f is defined as:
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Subsequently, the wavefront after passing through the thin
lens, denoted as u;, can be represented as:
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where A(2’,y’) represents the aperture of this optical sys-
tem. The complex wave field after the phase modulation of
DOE, as described in [3], can be expressed as:
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where n) is the wavelength-dependent refractive index of
the substrate, and H (2, y) is the DOE’s height map.

After traversing the aperture plane, the incident light has
accumulated phase variation:
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We apply the vanilla angular spectrum method
(ASM) [3] to simulate the wave propagation from the scene
to the sensor, traversing both the learnable DOE and the thin
lens. The ASM can strictly portray the scalar wave propaga-
tion process, which guarantees the simulation accuracy for
the scene from different fields of view. The diffractive wave
field at the sensor imaging plane (x, y, z) can be calculated
by the following:
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where F is the Fourier transformation operator, and H is
the light transport term. Therefore, the PSF of this imaging
system captured by sensors can be specified as:
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which represents the amplitude of the wave field at the
imaging plane z.

To enforce an accurate, fast, and flexible wave propa-
gation in DOE optimization, we apply the LS-ASM [8] in
simulation, which effectively specifies the least samplings
in the imaging process for simulation and optimization.

A.2. Measurements with Sensor Responses

In our deep stereo optics framework, we can derive the PSFs
(p1, pr) for the left and right cameras, expressed as:

2
pe = [F Y Fluos (. i)} Halhxo 0} ®



In the real-world scenarios, light sources are generally
incoherent. Therefore, when the light waves emitted from
different points in the scene contribute to the same pixel on
the image plane, the measured light intensity of the pixel
is the linear summation of the intensities of these point
sources [8]. Considering the image formed by the target
scene through an ideal optical system, its light intensity dis-
tribution is I(x,y, \), where (z,y) represents the coordi-
nates of the image plane, and ) is the wavelength. In gen-
eral, the sensor captures images with N, channels, and the
image of the ¢ channel (¢ = 1,2,..., N,) can be defined
as:
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where A = {632, 550, 450 }nm is the considered spectrum,
and the wavelength A € A, x represents the 2D convolu-
tion, 7.(z,y) is the corresponding noise, N, is the num-
ber of channels, () represents the image plane modulation,
which linearly transforms I(z,y, A) into another 3D func-
tion, py(x,y) is PSF at the wavelength A, and R.(\) is the
spectral response function of channel c. The last three parts
correspond to the three types of wavefront encoding: im-
age plane encoding, PSF encoding, and spectral response
encoding.

I' = I(z,y, \)*p, describes the forward imaging model
and the depth-variant PSF p,, facilitates different encodings
in the imaging process. Note that the sampling process of
the sensor discretizes the data and herein we ignore the im-
age plane variation and assume 2 as an identity matrix.

Therefore, for a given scene I (x,y,A), the stereo
camera measurement can be modeled as:
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where the left PSF p;(x, y, \) describes the image forma-
tion process of the left capture while p,.(x, y, ) is its coun-
terpart for the right capture. After optimizing the PSFs of
the imaging system, we apply the sensor response curves to
derive the captured PSFs at the sensor plane.

A.3. Sampling Details in Simulation

In our sampling strategy at the aperture plane, we utilized
an oversampling factor of 1.04 at a wavelength of 450nm
using the LS-ASM approach. This oversampling factor cor-
responds to a spatial sampling number of (1,260 x 1,260)
for a 35mm lens with the f-number of 8, resulting in a fre-
quency sampling number of (1,600 x 1,600). Analysis of
the aliasing situation in the frequency spectrum indicates
that our sampling is sufficient and appropriate. The spatial
sampling pitch is 3.5um X 3.5um in physical scale. At the
DOE aperture plane, we set the upsampling factor to 2, in-

dicating that the size of optimizable height-map is (630 x
630), and the DOE pixel pitch is 7pum X 7Tpm.

B. Comparison of DOE Modeling Methods

In our simulations, we have optimized two sub-branch mod-
els targeting different depth ranges, as illustrated in Fig. 1.
The PSF distribution optimized for the range of 1 to 5 me-
ters exhibits a more concentrated distribution within the
range of 0.8 to 3 meters. This concentration results in a
faster convergence speed of the optimized DOE. On the
other hand, the branch model optimized for the 0.67 — 8m
(1.4 diopters) range demonstrates a relatively concentrated
state within the 1 — 8m range, significantly enhancing the
capability to capture high-frequency information in far-field
scenarios, thereby offering practical utility for a wide range
of scenes. The subsequent experimental comparisons are
all based on discussions conducted using the 1.4-diopter
branch model, with the focal distance set as 1.24m. Over-
all, we have implemented four DOE encoding schemes in
our Deep-Stereo model (Fig. 2) and optimized them in an
end-to-end manner.

B.1. Analysis of DOE Initialization

The asymmetric initialization plays a crucial role in provid-
ing complementary sampling for the left and right channels.
As shown in Fig. 3, we have optimized the left and right
DOEs using five different initialization approaches under
our Deep-Stereo framework. When using symmetric ini-
tialization methods like zeros, it becomes challenging for
the networks to escape a local minimum and break sym-
metry to generate the necessary complementary sampling
for the left and right channels. This behavior is evident in
the cylindrical and perpendicular cylindrical initialization,
as illustrated in Row 2 and Row 4 in Fig. 3. Average PSNR
and EPE metrics are presented. Compared with zero ini-
tialization, the cylindrical phase introduces the optical focal
power of the DOEs, resulting in increased phase variation.

On the other hand, perpendicular cylindrical initializa-
tion combines two directional cylindrical phases with dif-
ferent phase variation ranges to provide focal power in per-
pendicular directions and achieve asymmetric initialization.
The optimization results in the simulation indicate that both
the rotated cylindrical and perpendicular cylindrical phases
can be optimized into DOEs capable of generating comple-
mentary PSFs for the left and right channels. However, the
RGB imaging quality of the rotated cylindrical initializa-
tion method appears more dispersed and blurred compared
to the perpendicular cylindrical approach.

B.2. Analysis of DOE Parameterization

The Rank-2 modeling has the capability of initializing the
matrix using a perpendicular cylindrical phase with the low-
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Figure 1. The PSFs of two optimized optical systems across varying depth ranges are presented. Row 1 represents the baseline thin lens
system. Rows 2 and 3 depict the optimization of the left and right imaging channels within the range of 1m — 5m. Rows 4 and 5 showcase
the learned PSFs for the left and right cameras covering the range of 0.67m — 8m.

est parameter count compared with other methods we have
tested. For a DOE with a sampling size of m x m, a pixel-
wise design space offers m? degrees of freedom (DoF),
which can be challenging for optimization when m is a large
value. Apart from Rank-2 modeling, we optimized two fre-
quently utilized DOE encoding approaches for comparison,
namely the ring design with rotational symmetry [4] and the
Rank-1 design [6]. By comparison, the ring model and the
low-rank model are encoded by a small number of k vec-
tors with a length of the mask, corresponding to k - m DOoF,
with & = 1, 2, or 4 for the ring, rank-1 and rank-2 mod-
els, respectively. These models are limited in their ability
to encode matrices with asymmetric or perpendicular cylin-
drical phases. We have evaluated the PSFs in Fig. 2 and
RGBD imaging results optimized via different DOE mod-
eling schemes in Fig. 11, where the real-captured results
were all directly generated by simulation-optimized models
without further model fine-tuning.

C. Ours vs. Other Deep-Optics Methods

In this supplementary section, we provide a comprehensive
comparison between our proposed Rank-2 Stereo method
and several state-of-the-art deep-optics approaches, namely
Monocular Depth-from-Defocus (Mono-DfD) [4], Coded
Stereo [7], and Ring-coded Stereo using our proposed net-
work architechure. Our analysis is based on both qualitative
observations and quantitative simulation results, as summa-
rized in Table 1 and illustrated in Fig. 5 and 6.

Our simulation studies (see Fig. 5) were conducted using
the same stereo matching algorithm and UNet architecture
across all methods for fairness. In these simulations, the
Coded Stereo approach was modeled with identical rota-
tional encoding for both cameras—omitting the benefits of
view warping and RGB-depth fusion—which our Rank-2
Stereo method fully exploits.

Structural & Hardware Design: Unlike methods that
extend the depth-of-field or rely solely on defocus cues, our
Rank-2 Stereo employs a complementary encoding scheme
that enables physical interaction between the left and right
channels. In contrast, Coded Stereo [7] uses identical ro-
tational encoding for both cameras. The identicalsymmet-
rical DOE encoding (Ring), despite achieving comparable
extending DoF results, suffers from hazier RGB reconstruc-
tions due to lower diffraction efficiency and lacks physi-
cal information interaction between left and right channel,
particularly affecting high-frequency details, as evidenced
in Fig. 6. The same rotational encoding on both channels
can not exploit the mutual benefits available through RGB-
depth interaction and view warping.

Algorithm Design: Our method leverages joint stereo
and focus information to reconstruct RGB and estimate
depth. A key difference from [7] is the warping of the right
view to the left perspective, which facilitates the fusion of
overlapping regions for enhanced image restoration and im-
proved depth estimation. By comparison, Coded Stereo [7]
decouples the processes for RGB reconstruction and depth
estimation, while Mono-DfD relies exclusively on defocus
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Figure 2. PSF distributions under different learned DOE profiles, ranging from 0.67m to 8m. Row 1 represents our baseline thin-lens
system without DOE, which is consistent for both the left and right cameras. The subsequent rows depict thin lens+DOE imaging sys-
tems optimized using various encoding approaches. Rows 2-3 and Rows 4-5 are optimized using Ring modeling and Rank-1 modeling,
demonstrating small differences and complementary characteristics between the left and right channels. Rows 6—7 showcase our proposed
DOEs optimized through the Rank-2 modeling method. It is evident that they exhibit differentiation between the left and right channels for
acquiring complementary information while simultaneously displaying far-field focusing properties.

Table 1. Comparison of Deep-Optics Methods.

Method DOE Algorithm Depth range RGB-PSNR/SSIM  D-RMSE/EPE
Mono-DfD [4] Ring Defocus-based U-Net 0.8 diopter 29.13/0.889 0.139/ - -
Ring-coded stereo [7]  Ring  Separate SDE + RGB recon  0.84 diopter 31.06/0.902 0.090/1.41
Our Ring-coded Ring Fused SDE+ RGBD 1.4 diopter 31.24/0.912 0.078/1.28
Our rank2-coded Rank2 Fused SDE+ RGBD 1.4 diopter 32.13/0.917 0.071/1.21

cues from a monocular view. Moreover, our Rank-2 Stereo sign and a unified algorithmic framework yields superior

method extends the effective diopter range to 1.4 diopter, in quantitative and qualitative RGBD performance.

contrast to the 0.84 diopter range demonstrated by Coded

Stereo [7].

Overall, the integration of complementary hardware de-
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Figure 3. Optimized DOE profiles with different initialization schemes. Row 1 represents the thin-lens baseline, Row 2 is the Ring
modeling with zero initialization. Row 3-5 are the cylindrical phase initialization (CYL). We present the Peak Signal-to-Noise Ratio
(PSNR) and depth Endpoint Error (EPE) values for each initialization and encoding method on the rightmost side, as evaluated using the
Scene Flow datasets[5].
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Figure 4. DOE fabrication workflow.



Ring-coded Stereo Our Ring-coded Our Rank2-coded Ground Truth

Row 1: Meaurement
Row 2: Recovered RGB
Row 3: Estimated depth

X [ \

Mono DfD
-
.

X

Figure 5. Simulation comparisons of RGB and depth estimation between monocular depth-from-defocus (Mono DfD), identical coded
stereo (Ring-coded Stereo)[7], ring-coded stereo using our architecture (Our Ring-coded), and our proposed Rank2-coded Stereo. Zoom-
in views highlight the improved reconstruction of high-frequency details by our Rank-2 Stereo method compared to Ring-coded and Coded

Stereo approaches.
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Figure 6. Experiment comparisons of RGB and depth estimation between rank2-coded and ring-coded stereo.

D. Model Fine-tuning and Prototype Details
D.1. Neural Network Model Fine-tuning

Our ability to create phase profiles on fused silica wafers
is limited to 2% levels due to constraints imposed by pho-
tolithography and dry etching techniques. Prior to fabrica-
tion, it is essential to quantize the optimized DOEs, as de-
picted in Fig. 7. It is worth noting that there are minimal
discrepancies between the PSFs of continuously designed
DOE:s and their quantized versions, as illustrated in Fig. 8.
This indicates that the quantization process does not signif-
icantly impact the performance of the optimized DOEs in
terms of PSF quality.

After the optimization process, a two-step fine-tuning
approach is implemented. Firstly, following the end-to-end
training, the model undergoes fine-tuning using the quan-
tized DOEs. Furthermore, to simulate wide-spectrum PSFs

that are more representative of real-world photography sce-
narios, Gaussian blur is applied. This additional step en-
hances the model’s ability to generate more realistic and
versatile PSFs across a wider spectrum of wavelengths, im-
proving the overall performance and applicability of the
model.

In the second phase of fine-tuning, which occurs af-
ter DOE fabrication, a uniform white light source with a
25um aperture is employed to capture the actual PSF dis-
tribution of the stereo DOE-thin lens system. Given the
asymmetrical and 45°-rotated nature of our DOE design,
which differs from conventional lens and ring-coded DOEs,
post-assembly calibration is necessary when integrating the
DOE:s into standard lens groups. During the calibration pro-
cess, near-field PSFs are captured using high exposure lev-
els. Overexposure leads to the captured PSF of a point light
source assuming a cross-star shape, facilitating straightfor-
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Figure 7. Quantization of DOE patterns for fabrication.
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Figure 8. PSFs generated using optimized DOEs with the continuous (top-group) and the 16-level quantized (bottom-group) heightmaps.

ward calibration in the x — y direction. After acquiring 3D
PSFs, each PSF is centered based on its maximum value
and used to refine our pre-trained model.

The final model undergoes training for 3 epochs, with
images sized at (320 x 736). In Fig. 10, we compare
the imaging results before and after fine-tuning the trained
model. The comparison shows that there is slight enhance-

ment in the quality of RGBD imaging by reducing halos and
restoring colors in RGB image recovery. The observed dif-
ferences in these effects fall within an acceptable range. It
is evident that the end-to-end trained model exhibits strong
generalization capabilities, showcasing its ability to adapt
and improve performance through fine-tuning processes.
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D.2. Additional Prototype Details

To address the challenge of precisely placing the DOE
plates at the entrance pupil plane, it is essential to measure
and calculate the magnification between the entrance pupil
and the DOE plane (aperture). For our Nikon 35mm {/2D
lens, the magnification factor is Mg_, 4 = 0.97, and the
dimensions of our DOE are 7um x 630 = 4.41mm. With
the DOE positioned at the aperture plane, the equivalent F
number is calculated to be 8.18.

We are providing a supplementary video clip, pro-
totyperesults.mp4, which presents an overview of our
learned stereo camera prototype, particularly illustrating the
positioning of DOEs within a pair of lenses, and the image-
capturing process.

D.3. DOE Fabrication

Various photolithography techniques are available [1, 2] for
DOE fabrication. The micro-structures in the optimized
DOE:s consist of mainly high-frequency spatial features that

Figure 9. Comparison of captured and simulated PSFs for our learned stereo camera across the depth range from 0.67m to 8m. Row 1 and
4 show the PSFs captured by our stereo camera prototype, while Row 2 and 5 showcase the simulated PSFs with a measured patch size of
50 x 50 pixels. Row 3 and 6 indicate the simulated PSFs with a higher sampling at three principal wavelengths: 632nm, 550nm, 450nm.

require depth-preservation in the vertical direction. There-
fore, we adopt the well-established etching-based fabri-
cation techniques that have been widely used in similar
diffractive imaging tasks [6]. The fabrication workflow
is illustrated in Fig. 4. The fabrication cycle consists of
three major blocks, including mask making, photolithogra-
phy, and reactive-ion etching. Key parameters in each step
are listed in each corresponding block. By repeating the
photolithography and reactive-ion etching for 4 times, a 16-
level DOE can be fabricated.

E. Additional Experimental Results

The captured scene in Fig. 11 presents challenges in light-
ing and color distribution due to the dark lighting of the pure
black background and uneven foreground lighting condi-
tions. While Ring and Rank-1 encodings can capture more
high-frequency information compared to the thin-lens base-
line model, they are more susceptible to variations in light
source illumination and object reflections. This sensitiv-
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Figure 10. Comparison of RGBD images recovered using the original trained model and the model after fine-tuning for 3 epochs.

ity can result in the appearance of circular or cross-shaped
scattering spots in high-energy regions, which were not ob-
served in simulation results, necessitating careful scene se-
lection. This highlights one of the unresolved issues with
DOE:s in imaging. On the other hand, our Rank-2 encod-
ing exhibits relatively lower sensitivity to the uniformity of
lighting in both the light source and the scene being cap-
tured, enabling the generation of high-quality all-in-focus
and depth images with improved color reproduction.

Additionally, the last row of real-world scenes depicted
in Fig. 11 showcases the outcomes captured using a 1.6 mm
pinhole (f/22). We adjusted the exposure time for the image
captured with the small pinhole to 990ms, which is three
times longer than that of all other captured images. While
this setting allows for capturing some high-frequency infor-
mation, the RGB image quality still lags behind our sys-
tem, and the depth estimation is prone to generating erro-
neous disparities. We note that a smaller pinhole diameter
can provide a broader depth of field, albeit with reduced
light and energy transmission through the aperture. This
reduction necessitates higher exposure levels, leading to in-
creased noise in the captured images. In real-world exper-
iments, excessively high exposure can result in a signifi-
cantly reduced frame rate during image capture, rendering
video shooting and processing unfeasible. Furthermore, op-
erating in challenging conditions such as low-light environ-
ments presents significant challenges. Under such circum-
stances, even increasing the exposure settings may not be
sufficient to achieve accurate scene recovery.

We present additional results acquired using our Rank-2
Deep-Stereo framework in Fig. 12. By employing the mir-

ror data augmentation method when training the model, we
can obtain high-quality left and right RGBD images with
snapshots, as shown in Row 1-2 in Fig. 12. Our observa-
tions indicate that our model performs reasonably well for
both indoor and outdoor scenes at various distance scales.
Details and edges of objects are better resolved, compared
to baselines. Nevertheless, certain constraints persist due to
the diffraction efficiency of the DOE.

We have noticed that the imaging quality of the DOE can
be affected in indoor environments featuring strongly diver-
gent light sources and light-reflective objects, as opposed to
outdoor settings and uniform light sources. As illustrated
in the upper-right corner of scenes in Fig. 12, higher-energy
light sources can result in star-shaped light patterns appear-
ing in the coded images. We leave this issue to future en-
deavor.

F. Supplementary Dynamic Acquisition Demo

In the provided supplementary video clip, prototypere-
sults.mp4, we also present the measurements and recov-
ery RGBD imaging results of our learned stereo camera un-
der dynamic acquisition configurations. The exposure is set
20 ms.
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Figure 11. Sanity-check experimental results acquired using various optics, including the thin lens, our Rank-2 representation, the vanilla
Rank-1 representation, the rotational symmetric representation (Ring), and a clear aperture with a small diameter size. We have captured
images of the same scene under identical illuminance conditions. The first row represents the results from a traditional stereo camera,
serving as our baseline model. The second row exhibits our proposed stereo camera prototype utilizing a pair of Rank-2 encoding DOEs.
Rows 3 and 4 demonstrate the RGBD reconstruction results achieved using DOEs optimized with Ring and Rank-1 encoding schemes,
respectively. The final row presents the results of approximate all-in-focus imaging obtained by employing a small aperture of /22,
captured with three-fold higher exposure time compared to the other setups. The scales of our estimated depth map for one scene are all
the same.
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Figure 12. Additional experimental results acquired from our Rank-2 learned stereo camera. From left to right: Captured, Recovered AiF
RGB, and Estimated Depth.
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