LiVOS: Light Video Object Segmentation with Gated Linear Matching

Supplementary Material

1. Baselines

We introduced four primary baselines in the main paper. In
this section, we present the remaining seven baselines.
AOT [24] and DeAOT [22] are two consecutive approaches
to improve the efficiency of VOS with multiple objects. Fol-
lowing Cutie [6], we use the model variants with a ResNet-
50 backbone as baselines.

CFBI [23] and CFBI+ [25] propose a collaborate VOS ap-
proach that integrates both foreground and background in-
formation into embedding learning. As they only use two
memory frames, we classify them as non-STM methods
with less strict criteria. Both models use RestNet-101 as
the backbone, and we adopt them as our baselines.

DEVA [5] decouples task-specific image-level segmenta-
tion and mask propagation for universal video segmenta-
tion. We use as the model trained solely on YouTube-
VOS [21] and DAVIS 2017 [16] as the baseline.

SwiftNet [19] balances accuracy and speed by compressing
spatiotemporal redundancy in matching-based VOS with a
pixel-adaptive memory. We use the model variant with a
ResNet-50 backbone as the baseline.

MobileVOS [15] distills knowledge from a teacher model
utilizing large backbone and infinite memory. We use the
best-performing model variant with a ResNet-18 backbone
as the baseline.

2. Related Work

Interactive VOS. Semi-supervised video object segmen-
tation is highly related to interactive video object seg-
mentation (iVOS), which focuses on segmenting objects
in video sequences through user interactions. Traditional
methods [1, 4, 9, 14] often rely on user-provided annota-
tions, such as scribbles or clicks, to guide segmentation
algorithms. Recent advancements have introduced mod-
ular approaches that separate user interaction from mask
propagation [4]. Additionally, reinforcement learning tech-
niques have been applied to recommend the most informa-
tive frames for annotation, thereby reducing user effort [26].
Another notable development is the use of reliability-based
attention maps to assess the trustworthiness of annotated
frames, leading to more accurate segmentation with fewer
interactions [9]. Furthermore, the integration of global and
local transfer modules has been explored to enhance the
propagation of segmentation information across frames [8].
Our method can be integrated existing interactive image
segmentation approaches [2, 11-13, 18, 20] for interactive
video object segmentation.

Segment Anything Model. Recent approaches have inte-
grated the Segment Anything Model (SAM) [10] on images
with video trackers based on masks [5]. However, there
is no mechanism to interactively refine the tracker’s errors.
The recent proposed SAM 2 [17] addresses this by propos-
ing a unified model that directly takes prompts for inter-
active video object segmentation, along with a large and
diverse video segmentation dataset. Our work focuses on
semi-supervised VOS, which can be viewed as a specific
instance of the Promptable Visual Segmentation (PVS) task
proposed by SAM 2, utilizing only a mask prompt in the
first video frame.

3. Experiments
3.1. Comparisons

CPU latency comparison. Fig. A compares CPU latency
(in milliseconds) of softmax matching (blue) and linear
matching (red) as the number of objects (N) increases. Note
that we only report CPU latency rather than GPU latency
because GPU latency is close for both matching meth-
ods, despite softmax matching significantly increasing GPU
memory usage.
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Figure A. CPU latency comparison between softmax matching and
linear matching. Both linear and softmax attention scale linearly
with the number of input objects. However, softmax attention has
a significantly steeper slop. Latency is measured on an Intel Core-
i7 (2.80GHz) CPU with PyTorch 2.0, batch size 1, and fp32.

Comparisons with downgraded Cutie models. In Table
1 of the main paper, a valid concern arises regarding unfair
comparisons with the downgraded Cutie—it uses only one
memory frame in inference but multiple during training. To
ensure fairness, we train Cutie-small and Cutie-base models



with a single memory frame. As shown in Tab. A, retrained
models slightly improve performance but still fall short of
LiVOS.

Method with STM ~ J&F J F

J Cutie-small X 76.4 73.0  79.8
J Cutie-small?* X 774 (+1.0) 740 809
J Cutie-base’ X 79.3 75.8 827
J Cutie-base* X 80.1 (+0.8) 769 83.3
JLiVOS X 84.4 81.2 87.6

Table A. Comparisons with Cutie models on DAVIS-17 val. T de-
notes a model that used one memory frame in inference but mul-
tiple during training (unfair). ¥ denotes a model that used one
memory frame for both training and inference (fair). J represents
models trained on YouTube VOS and DAVIS.

Comparisons with downsampling baselines. In Table
3 of the main paper, one can simply downsample the
high-resolution input video, process it with a VOS algo-
rithm, and then upsample it back to the original resolu-
tion. Tab. B shows the comparisons with downsampling
baselines, which downsample input videos to 240p/480p,
segment them and upsample the outputs back to 4096p.
LiVOS is trained and evaluated on 4096p, achieving notable
gains over downsampling baselines. Our method outper-
forms downsampled non-STM baselines but still falls short
of downsampled STM variants. Note that LiVOS has not
utilized any modules dedicated for high-res segmentation,
leaving room for future improvements.

Method with STM Res. TJ&F J F

J Cutie-small X 240p 69.9 66.2 73.7
J Cutie-small 480p 774 740 809
J Cutie-base 240p 709 67.1 746
J Cutie-base 480p  80.1 769 833
JLiVOS 4096p 824 796 853

X
X
X
X

Table B. Downsampling baseline comparisons on DAVIS-17 val.

3.2. Ablations

Recurrent state. By default, we update the recurrent state
for each frame. In this ablation, we investigate how does
LiVOS perform with only the first and the last frames in
memory for inference. In Tab. C, we evaluate LiVOS in a
degraded setting where only the first and the last frames are
used to update the state. The degraded LiVOS model has a
substantial performance drop, while speed and memory re-
main stable. This observation indicates that the state update
process is efficient and that per-frame updates are highly
beneficial.

Method JE&F T F Mem FPS

JLivos 844 812 87.6 574M 403
JLiVOS (degraded) 784 753 81.5 574M  42.2

Table C. Degraded evaluation on DAVIS-17 val.

4. Qualitative Results

We show some qualitative results in this section, includ-
ing the worse case (Fig. B) and a normal case (Fig. C).
We observed that the worst cases arise from thin and scat-
tered structures. Nonetheless, our method is capable of ef-
fectively segmenting and tracking some of the objects. In
typical cases, such as objects shwon in Fig. C, our method
demonstrates exceptional robustness.

5. Implementation Details

Projector. The projector converts a feature map into a
gate matrix for element-wise multiplication with the state
matrix. We implement the projector with a light-weight
convolutional neural network.

Sensory Memory. We adopt sensory memory [3] to
maintain low-level information such as object location. A
sensory memory stores a hidden state H;,,; € REW*Cn,
initialized as a zero vector, and propagated by a Gated Re-
current Unit (GRU) [7]. The hidden state H,,; is updated
every frame using multi-scale features of the mask encoder
and decoder, and is added to the value readout V;;;. We
set the sensory feature dimension C', to 256. More details
please refer to XMem [3].

Object Memory. We enrich the value readout V;,; for
the query frame with object-level semantics using an ob-
ject transformer [6]. The object transformer takes the initial
value readout V;; € RHWXCoXN "4 get of M end-to-
end trained object queries Q € RM*¢ and object memory
O € RV*C and integrates them with L transformer blocks.
We set the number of object transformer blocks L to 3 and
the number of object queries M to 16. More details, please
refer to Cutie [6].

6. Discussions

Limitations. = While memory-efficient, our method still
lags behind state-of-the-art STM-based approaches across
all benchmarks, including short, long, and high-resolution
videos. We attribute this gap to excessive input compres-
sion, which limits the model’s capacity to retain detailed
information.
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Figure B. Qualitative results of the worse case in DAVIS 2017 validation set. Although the objects have thin and scattered structures, our
method is capable of effectively segmenting and tracking some of them. Best viewed when zoomed in.
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Figure C. Qualitative results of a normal case in DAVIS 2017 validation set. Our method works well for these normal objects. Best viewed

when zoomed in.

Future Work. A promising future direction is to enhance
the single recurrent state with a more advanced representa-
tion, better suited for high-resolution video object segmen-
tation and fine-structure delineation. Additionally, due to
limited time and space, we do not perform out-of-domain
evaluation (e.g., on medical videos). Given the class-
agnostic nature of semi-supervised VOS, we remain cau-
tiously optimistic for future exploration.
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