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I. Experiments Across Diverse Datasets

We apply our method to DomainNet and CUB datasets,
following the experimental setup of InfLoRA [2] and
EASE [5], respectively. As shown in Table A, while our
method does not achieve the highest accuracy on Domain-
Net, it performs comparably to the SOTA methods. Do-
mainNet consists of five short tasks, where our method’s
strengths are less evident. However, on CUB, which in-
volves longer tasks, our method excels with an ACC20 of
92.78%, outperforming both InfLoRA and EASE.

Table A. Comparisons in DomainNet and CUB.

Method DomainNet CUB
ACC5 ACC5 ACC20 ACC20

InfLoRA 69.68 76.93 62.68 76.57
EASE 66.39 72.21 86.13 91.68
Ours 70.37 76.65 87.74 92.78

II. Variants for Computing Drift-Resistance
Space

We conduct experiments to evaluate the effectiveness of the
LoRA subtraction method. Specifically, we employ the ini-
tial pre-trained weights W0 to design DRS. Tab. B presents
the results of our method alongside its variant. From the
results, we observe that the variant does not perform as ef-
fectively as our method, thus LoRA− is necessary.

Table B. DRS Computation with W0 v.s. LoRA− on CIFAR-100.

ACC10 ACC10 ACC50 ACC50

W0 → DRS 63.04 90.33 52.88 78.32
LoRA− → DRS 89.40 92.78 86.82 91.29

III. Further Performance Analysis

We provide a detailed analysis of the performance of the
old and new classes compared to existing methods [1–5],
as shown in Tab. C. Specifically, the results demonstrate
a 5.5% improvement in Aold over EASE, and a 9.5% im-
provement in Anew compared to EASE. Our method is con-
sistently better than all methods on both tasks and thus more
stable and plastic.

Table C. The old class accuracy (Aold) and new class accuracy
(Anew) at different stages of CIFAR-100 50 tasks.

Stage-10 Stage-20 Stage-40 Stage-50
Aold Anew Aold Anew Aold Anew Aold Anew

LAE 90.17 92.5 83.13 83.5 79.22 80.5 73.54 85.5
L2P 88.72 91.5 79.95 94.5 76.33 90.0 76.72 68.5

InfLoRA 83.83 79.0 70.76 94.0 61.29 67.0 60.84 78.5
Adam-NSCL 78.67 61.5 65.24 79.0 56.83 59.5 53.19 68.5

EASE 92.67 95.0 87.53 94.0 81.77 89.5 81.34 76.5
Ours 95.61 95.0 91.34 94.5 87.53 92.5 86.84 86.0

IV. Memory Usage and Storage Efficiency
Existing methods typically store statistical information
from previous tasks to reduce the impact of feature drift.
We compare the memory usage of prior methods that ex-
plore related ideas, including InfLoRA and Adam-NSCL.
As shown in Tab. D, our method demonstrates the lowest
memory requirement with ViT-B/16-IN21K for CIFAR100
50 tasks, as it does not retain statistics from previous tasks.
Our LoRA− approach enables efficient storage and compu-
tation while effectively handling feature drifts without ex-
plicit feature modeling.

Table D. Memory usage of storing statistics on CIFAR100 50-task.

Method Adam-NSCL InfLoRA Ours
Memory (KB) 720.9 2861.3 0.0
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