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Supplementary Material

Additional Experiments on 3D Tasks

To verify that our method not only performs well on 2D tasks
but is also effective for 3D tasks, we conducted experiments
on additional 3D tasks. In addition to the ModelNet40[26]
classification experiment, we also tested on the more chal-
lenging ScanObjectNN[21] dataset. Unlike ModelNet40,
which is a synthetic dataset, ScanObjectNN is a real-world
object dataset and is commonly evaluated under three set-
tings: OBJ BG, OBJ ONLY, and PB T50 RS. Among these,
the PB T50 RS setting is the most challenging. Comparing
the results of HybridNet and Mamba3D under the Supervised
Learning Only setting reveals that HybridNet performs only
slightly better than Mamba3D. However, both HybridNet and
Mamba3D achieve significant performance improvements af-
ter MAP pretraining. This further validates that the MAP pre-
training strategy is not only effective for hybrid frameworks
but also enhances the pure Mamba framework. Comparing
the results of Mamba3D under Point-BERT, Point-MAE, and
MAP, it is evident that MAP demonstrates a significant per-
formance advantage. This proves that even within the pure
Mamba framework, MAP can surpass the performance of
BERT-style and MAE-style pertaining. We also conducted
experiments on the few-shot learning task of ModelNet40
to validate the effectiveness of MAP. After MAP pretrain-
ing, both HybridNet and Mamba3D achieved significant per-
formance improvements. On the more fine-grained task of
ShapeNetPart[28] part segmentation, we also demonstrated
that MAP can bring significant performance improvements
to both hybrid frameworks and the pure Mamba framework.

Method
5-way 10-way

10-shot ↑ 20-shot ↑ 10-shot ↑ 20-shot ↑

Supervised Learning Only

DGCNN [24] 31.6 ± 2.8 40.8 ± 4.6 19.9 ± 2.1 16.9 ± 1.5
Transformer [22] 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3
Mamba3D [7] 92.6 ± 3.7 96.9 ± 2.4 88.1 ± 5.3 93.1 ± 3.6
HybridNet 92.8 ± 3.2 97.0 ± 1.8 88.4 ± 4.3 93.1 ± 3.8

with Self-supervised pretraining

DGCNN+OcCo[23] 90.6 ± 2.8 92.5 ± 1.9 82.9 ± 1.3 86.5 ± 2.2
OcCo [23] 94.0 ± 3.6 95.9 ± 2.7 89.4 ± 5.1 92.4 ±4.6
PointMamba [9] 95.0 ± 2.3 97.3 ± 1.8 91.4 ± 4.4 92.8 ± 4.0
MaskPoint [11] 95.0 ± 3.7 97.2 ± 1.7 91.4 ± 4.0 93.4 ± 3.5
Point-BERT [29] 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1
Point-MAE [14] 96.3 ± 2.5 97.8± 1.8 92.6 ±4.1 95.0 ± 3.0
Mamba3d+P-B [29] 95.8 ± 2.7 97.9 ± 1.4 91.3 ± 4.7 94.5 ± 3.3
Mamba3d+P-M [14] 96.4 ± 2.2 98.2 ±1.2 92.4 ± 4.1 95.2 ± 2.9
Mamba3d+MAP 97.1 ± 3.1 98.7 ±1.3 92.8 ± 2.1 95.8 ± 3.1
HybridNet+MAP 97.3 ±2.8 98.7 ±0.8 93.0 ± 3.6 96.0 ± 2.7

Table 1. Few-shot classification on ModelNet40 dataset. Overall
accuracy (%) without voting is reported. P-B and P-M represent
Point-BERT and Point-MAE strategy, respectively.

Method PT #P ↓ #F ↓
ScanObjectNN

OBJ BG ↑OBJ ONLY ↑PB T50 RS ↑

Supervised Learning Only: Dedicated Architectures

PointNet[16] × 3.5 0.5 73.3 79.2 68.0
PointNet++[17] × 1.5 1.7 82.3 84.3 77.9
DGCNN[24] × 1.8 2.4 82.8 86.2 78.1
PointCNN[8] × 0.6 - 86.1 85.5 78.5
DRNet [19] × - - - - 80.3
SimpleView[4] × - - - - 80.5±0.3
GBNet[20] × 8.8 - - - 81.0
PRA-Ne[3] × - 2.3 - - 81.0
MVTN[6] × 11.2 43.7 92.6 92.3 82.8
PointMLP[13] × 12.6 31.4 - - 85.4±0.3
PointNeXt[18] × 1.4 3.6 - - 87.7±0.4
P2P-HorNet[25] ✓ - 34.6 - - 89.3
DeLA[2] × 5.3 1.5 - - 90.4

Supervised Learning Only: Transformer or Mamba-based Models

Transformer × 22.1 4.8 79.86 80.55 77.24
PCT[5] × 2.9 2.3 - - -
PointMamba[10] × 12.3 3.6 88.30 87.78 82.48
PCM[30] × 34.2 45.0 - - 88.10±0.3
SPoTr[15] × 1.7 10.8 - - 88.60
PointConT[12] × - - - - 90.30
Mamba3d w/o vot.[7] × 16.9 3.9 92.94 92.08 91.81
Mamba3d w/ vot.[7] × 16.9 3.9 94.49 92.43 92.64
HybridNet w/o vot. × 19.3 4.4 92.81 92.28 91.97
HybridNet w/ vot. × 19.3 4.4 94.50 92.58 92.66

With Self-supervised pretraining

Transformer OcCo 22.1 4.8 84.85 85.54 78.79
Point-BERT IDPT 22.1+1.7† 4.8 88.12 88.30 83.69
MaskPoint MaskPoint 22.1 4.8 89.30 88.10 84.30
PointMamba Point-MAE 12.3 3.6 90.71 88.47 84.87
Point-MAE IDPT 22.1+1.7† 4.8 91.22 90.02 84.94
Point-M2AE Point-M2AE 15.3 3.6 91.22 88.81 86.43
Mamba3d w/o vot. Point-BERT 16.9 3.9 92.25 91.05 90.11
Point-MAE Point-MAE 22.1 4.8 90.02 88.29 85.18
Mamba3d w/o vot. Point-MAE 16.9 3.9 93.12 92.08 92.05
Mamba3d w/ vot. Point-MAE 16.9 3.9 95.18 94.15 93.05
Mamba3d w/o vot. MAP 16.9 3.9 93.62 92.75 92.65
Mamba3d w/ vot. MAP 16.9 3.9 95.64 94.87 93.76
HybridNet w/o vot. MAP 19.3 4.4 93.88 93.03 92.95
HybridNet w/ vot. MAP 19.3 4.4 95.84 94.97 93.87

Table 2. Results on 3D classification tasks. Our results are high-
lighted in blue . PT: pre-training strategy.

Method mIoUC (%) ↑ mIoUI (%) ↑ #P ↓ #F ↓

Supervised Learning Only

PointNet [16] 80.4 83.7 3.6 4.9
PointNet++ [17] 81.9 85.1 1.0 4.9
DGCNN [24] 82.3 85.2 1.3 12.4
Transformer [22] 83.4 85.1 27.1 15.5
Mamba3D[7] 83.7 85.7 23.0 11.8
HybridNet 83.5 85.6 25.1 12.9

with Self-supervised pretraining

OcCo [23] 83.4 84.7 27.1 -
PointContrast [27] - 85.1 37.9 -
CrossPoint [1] - 85.5 - -

Point-MAE [14] 84.2 86.1 27.1 15.5
PointMamba [9] 84.4 86.0 17.4 14.3
Point-BERT [29] 84.1 85.6 27.1 10.6
Mamba3d+P-B [29] 84.1 85.7 21.9 9.5
Mamba3d+P-M [14] 84.3 85.8 23.0 11.8
Mamba3d+MAP 84.5 86.0 23.0 11.8
HybridNet+MAP 84.7 86.3 25.1 12.9

Table 3. Part segmentation on ShapeNetPart dataset. Our results are
highlighted in blue . The class mIoU (mIoUC) and the instance
mIoU (mIoUI ) are reported, with model parameters #P (M) and
FLOPs #F (G).
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