MODfinity: Unsupervised Domain Adaptation with
Multimodal Information Flow Intertwining

Supplementary Material

1. Appendix

1.1. More Details About Datasets

Our evaluation employs three datasets: AVE [8], EPIC-
Kitchens 55 [2], and CogBeacon [7]. These datasets feature
distinct characteristics and cover various domains, includ-
ing video event detection, action recognition, and environ-
mental interaction understanding.

1.1.1. Event Recognition Dataset (AVE).

AVE [8] dataset contains 4,143 videos covering 28 event
categories, and the image modal and audio modal are
aligned in time. The AVE dataset covers a wide range
of audio-visual events (e.g., man speaking, dog barking,
playing guitar, frying food, etc.), and each video contains
at least one 2s long audio-visual event. We follow [5] to
gain the source domain and the target domain. Specifi-
cally, the Resnet-50 network [3] pre-trained on Imagenet
is used to extract 1024-dimensional features of the image
of each sample. Then the feature vectors of each category
are clustered into two clusters by the K-Means algorithm.
Following [5], we obtained 41,728 source domain samples
and 23,919 target domain samples. Examples of 12 differ-
ent categories of images in the source domain and the target
domain are shown in Fig 2. It can be seen from Fig 2 that
the pictures of the source domain are distinguishable, while
images in the target domain are more difficult to distinguish
due to poor lighting conditions or occlusion. This shows
the obvious domain shift between the source domain and
the target domain.

1.1.2. Action Recognition Dataset (EPIC-Kitchens 55).

EPIC-Kitchens 55 [2] is a multi-modal dataset designed to
test domain adaptation for action recognition. It is recorded
in 32 environments and contains two modal forms of RGB
image and Optical Flow. In this paper, we use the same
division method as the previous work [6], considering the
domain adaptation problem among the three domains D1,
D2, and D3 in EPIC Kitchens. Some scenes of image and
optical flow models in the three domains are shown in Fig
1, which reflects the shift between domains. Eight types of
actions are analyzed: (‘put’, ‘take’, ‘open’, ‘close’, ‘wash’,
‘cut’, ‘mix’, and ‘pour’). The number of action segments
in the three domains D1, D2, and D3 are 1,978, 3,245 and
4,871 respectively. Even though this ensures sufficient ex-
amples per domain and class, EPIC-Kitchens 55 has a large
class imbalance offering additional challenges for domain
adaptation. Six domain migration combinations can be ob-
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Figure 1. Examples of the instances in the domain D1, D2, and D3
in EPIC Kitchens 55.

tained by combining different domains.

1.1.3. Fatigue Detection Dataset (CogBeacon).

CogBeacon [7] is a multi-modal dataset designed to re-
search the effects of cognitive fatigue on human perfor-
mance. The dataset consists of 76 sessions collected from
19 male and female users performing different versions of
a cognitive task inspired by the principles of the Wiscon-
sin Card Sorting Test. During each session, the users’ EEG
functionality and facial key points are recorded and labeled.
Specifically, each user performed three versions (namely
V1, V2, and V3) of cognitive task tests. Different versions
of cognitive tasks will produce different stimuli for users.
For example, the EEG signals when facing text-based stim-
uli and sound-based stimuli are different. Therefore, the
data collected under different versions of cognitive tasks can
be regarded as cross-domain data. In this paper, we choose
one version of cognitive task as the source domain, and the
other version as the target domain. The number of sam-
ples corresponding to the cognitive tasks V1, V2, and V3
are 2,259, 2,221, and 2,389 respectively. In the experiment,
we regard one of the domains as the source domain and the
other domain as the target domain. This setting method can
obtain six domain migration combinations.

1.2. More Details About Implementation

Our experiments are conducted using PyTorch on three
NVIDIA GeForce RTX 3090 GPUs. All of our results were
conducted in five or more experiments.

For the AVE dataset, RGB images are resized and center-
cropped to 224x224 pixels, while audio is transformed into
spectrograms using the Short-Time Fourier Transform. The
feature encoders for both image and audio utilize ResNet-
18 [3], transforming input samples into 512-dimensional
feature vectors. Each feature encoder was followed by
a two-layer fully connected head. The affinity measure-
ment encoder consisted of three hidden layers with 512-



Figure 2. Examples of the images in AVE. (a) Examples in the source domain. (b) Examples in the target domain.

dimensional fully connected layers. We used an SGD op-
timizer with a learning rate of 0.001 and a batch size of 128
for optimization, training for 40 epochs on the source do-
main data. In the domain adaptation phase, we trained for 5
epochs per iteration with a learning rate of 0.001.

For the EPIC-Kitchens 55 dataset, we conduct prepro-
cessing operations including rotation and translation. For
each video segment, we uniformly select 16 frames to con-
struct the input tensor. We employ a dual-stream 13D net-
work [1] as the feature encoder. Following the method
described in [1], we pre-train this network on the Kinet-
ics dataset. The affinity measurement encoder consisted of
three hidden layers with 512-dimensional fully connected
layers. We used an SGD optimizer with a learning rate of
0.001 and a batch size of 128 for optimization, training for
80 epochs on the source domain data. In the domain adap-
tation phase, we trained for 5 epochs per iteration with a
learning rate of 0.001.

For the CogBeacon dataset, we follow the methodology
described in [5] to convert EEG signals and facial key points
into one-dimensional feature inputs. We utilize a three-layer
one-dimensional ResNet network [3] as the feature encoder
the EEG and facial key points modalities. The affinity mea-
surement encoder consisted of three hidden layers with 256-
dimensional fully connected layers. We used an SGD opti-
mizer with a learning rate of 0.001 and a batch size of 128
for optimization, training for 40 epochs on the source do-
main data. In the domain adaptation phase, we trained for 5
epochs per iteration with a learning rate of 0.001.

1.3. Supplementary Explanation of Teaser

Figure 3 illustrates the performance of different information
flow optimization methods (source-only, coarse-grained [4],

and our proposed method) on the AVE dataset. We present
the classification results for two Cat samples and three
Truck samples from the target domain using each method.
Specifically, samples labeled 1 and 3 have the ground truth
label Cat, while samples labeled 2, 4, and 5 have the ground
truth label Truck. The results are displayed as bar charts
comprising 28 bars corresponding to the 28 categories in
the AVE dataset: Church bell, Male speech, man speaking,
Bark, Fixed-wing aircraft, airplane, Race car, auto racing,
Female speech, woman speaking, Helicopter, Violin, fiddle,
Flute, Ukulele, Frying (food), Truck, Shofar, Motorcycle,
Acoustic guitar, Train horn, Clock, Banjo, Goat, Baby cry,
infant cry, Bus, Chainsaw, Cat, Horse, Toilet flush, Rodents,
rats, mice, Accordion, and Mandolin. In the bar charts,
the green bars represent the categories corresponding to the
ground truth labels (the 12th bar represents Truck, and the
23rd bar represents Cat).

Figure 3 shows that, in the source-only model, sam-
ples 1 and 4 are classified correctly in the image modal-
ity, while samples 2 and 5 are classified correctly in the
audio modality. The coarse-grained method allows sub-
modalities to exchange information indiscriminately, caus-
ing each sub-modality to be contaminated by incorrect in-
formation, which degrades the model’s performance. In
contrast, our method reduces the transmission of incorrect
information by optimizing the information flow. By finely
selecting high-quality information flows, sub-modalities
learn from each other effectively, promoting mutual com-
plementarity among modalities and leading to overall im-
provement.
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Figure 3. Detailed Description of the Teaser.This figure presents the classification vectors and the final predicted categories generated
by various methods. Predictions achieving Top-1 accuracy are classified as High Performance, those falling within Top-5 accuracy are
categorized as Moderate Performance, and the rest are labeled as Low Performance.



1.4. Supplementary Explanation of Efficiency issue

Our approach does not process samples sequentially; in-
stead, we utilize batch-wise matrix operations to acceler-
ate computation. As shown in Table 1, the training time is
comparable to other related methods. Importantly, the most
computationally expensive step remains backpropagation.
To address this, we introduce a gradient-blocking matrix,
which masks low-quality information flows during train-
ing. By allowing only high-quality signals to participate in
backpropagation, this mechanism enhances the quality of
information flow while simultaneously reducing the com-
putational burden.
Table 1. Training Timing Cost (Second/Batch)

Method | AVE | EPIC-kitchens 55 | CogBeacon | VGGSound

CEonly | 02433 3.540 0.068 4.110
MCT[25] | 0.2457 3.580 0.069 4.080
DANNI[9] | 0.2494 3.580 0.068 4.130
CL[13] 0.2538 4.200 0.073 4.540
Ours | 02519 | 3.840 | 0072 | 4270

‘We further added a time complexity analysis to address

the comments. Let the batch size be B, and let the back-
ward propagation timing costs for £ and E™ be d. and
dnm, respectively. The time complexity at each key stage is:
Training of Affinity Measurement. In this phase, E° is
trained using the MOML loss, while E™ is trained using
the CE loss. The time complexities are 0(32 X dc) and
O(B X dm), respectively. Thus, the total complexity is
O(B?xd.+Bxd,,). Since E™ has significantly more pa-
rameters than £ and d. < d,,,, the overall time complexity
for smaller batches is approximately O(B x d., ).
Fine-Grained Sample Filtering. In this phase, each sam-
ple in the batch is compared with class feature vectors to
compute an affinity matrix, with a complexity of O (B X c) ,
where c is the number of classes. As this step involves no
backpropagation, it is highly efficient. Furthermore, it is
executed only when the hyperparameter o exceeds a pre-
defined threshold, contributing to less than 5% of the total
training time.
Modal-Affinity Distillation. This phase uses a gradient-
blocking matrix to enable sample-level distillation via batch
processing. E° is updated with the MOML loss, while £
is optimized using the CE and MOD losses. The total time
complexity is O(B? x d,, ), comparable to other baselines
such as CL [4].

1.5. Supplementary Effectiveness Analysis of Gra-
dient Blocking and Visualized Experiments on
Noisy Data

The performance of each modality in multimodal models
varies across target domains, and unconstrained informa-
tion flow can amplify error propagation between modali-
ties. Figure 6 in the original paper demonstrates that our
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Figure 4. Accuracy of Measurements for Image and Audio Modal-
ities in the noisy AVE Dataset.

Affinity Measurement effectively identifies high-quality in-
formation flows with high accuracy. To further validate its
robustness, we include the new Figure 4, showcasing its
effectiveness on noisy datasets. Additionally, in the Fine-
Grained Sample Filtering phase, the gradient-blocking
matrix further regulates information flows, minimizing er-
ror propagation. As highlighted in Table 4 of the original
paper, our model achieves superior performance on noisy
datasets, underscoring the effectiveness of these strategies.
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