MVBoost: Boost 3D Reconstruction with Multi-View Refinement

Supplementary Material

1. More Implementation Details

Training. In our training process, we use a fixed set of six
viewpoints (front, front right, right, back, left, front left)
for supervision. Our camera model employed orthographic
projection. The rank of the LoRA layer in our boosted
model is 32.

Metric. We evaluate both the 2D visual quality and 3D ge-
ometric quality of the generated assets. We use the same
single view and then employ each model’s official multi-
view generation process to create their multi-view inputs,
simulating real user inference scenarios. For 3D geometric
evaluation, we first align the coordinate system of the gen-
erated meshes with the ground truth meshes, and then repo-
sition and re-scale all meshes into a cube of size [—1, 1]3.
We report Chamfer Distance (CD) and F-Score (FS) with a
threshold of 0.05, which are computed by all vertexes from
the surface uniformly.

Inference Time. Since our main network structure is simi-
lar to LGM, our inference time is the same as LGM, which
is within 5 seconds.

Dataset. During training, we rely on the data we gener-
ate, which consists of 100k samples. The evaluation is con-
ducted using the comprehensive GSO dataset, which con-
tains 1k samples.

Strength of 0.95 As noise strength increases, refinement re-
sults become closer to the original diffusion outcomes, im-
proving quality but reducing geometric consistency. Con-
versely, lower noise strength leads to results more aligned
with reconstruction, offering better consistency but lower
quality. A noise strength of 0.95 strikes a balance between
geometric consistency and image quality.

2. More Details about Method

MVBoost generates refined multi-view as pseudo-ground
truth through the Multi-View Refinement Strategy. The al-
gorithm details are presented in Algorithm 1. The symbols
used in the algorithm are explained and defined in the main
paper.

We leverage the generated pseudo-ground truth to boost
the 3D reconstruction model. LoRA is integrated into the
self-attention and cross-attention modules of the model,
with its parameters trained using the refined multi-view as
supervision. The algorithm details are presented in Algo-
rithm 2. The symbols used in the algorithm are explained
and defined in the main paper.

Algorithm 1: Multi-View Refinement Strategy
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Algorithm 2: Boosting Reconstruction Model
Input: Multi-View Dataset S, Base Model
Parameters ¢.
Output: Optimized model parameters ¢*.
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3. Experiment on Omni3D

To test the performance on real datasets, we follow the ex-
perimental setup of Instantmesh and conduct quantitative
tests on the Omni3D dataset orbiting views in Table 1. The
experimental results indicate that we achieved the best per-
formance on real datasets as well.

Table 1. Quantitative results on Omni3D dataset.

Method PSNRT | SSIMT | LPIPS] | CDJ | F-Scoret
VFusion3D 17231 | 0814 0.148 | 0.154 0.647
LGM 17.083 | 0.601 0215 | 0.168 0.628
InstantMesh 17.980 | 0.793 0.158 | 0.132 0.706
MVBoost (Ours) | 18.402 | 0.831 0.138 | 0.121 0.756

4. Experiment on OpenLRM

The framework is compatible with various reconstruction
models, supporting different types of 3D representations.
To further illustrate the versatility of our approach, we
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Figure 1. Qualitative experiments of boosted OpenLRM and original OpenLRM.

boost OpenLRM with multi-view refinement. We employ a
dataset of 5k refined multi-view images, integrating LoRA
layers with the rank of » = 32 into the self-attention and
cross-attention components of the Transformer Decoder in
OpenLRM. We train the boosted OpenLRM on 8 NVIDIA
A100 (80G) GPUs for half a day. Qualitative results are
illustrated in Figure 1, while quantitative outcomes are de-
tailed in Table 2 and Table 3. The boost OpenLRM demon-
strates superior performance over the original OpenLRM in
terms of geometric and textural details.

Table 2. Visual quality comparison on Google Scanned Objects
(GSO) between boosted OpenLRM and the original OpenLRM.

Method PSNRT | SSIMT | LPIPS|
OpenLRM 16.728 | 0.785 0.208
OpenLRM (Ours) | 17.023 | 0.832 0.181

Table 3. Geometry quality comparison on Google Scanned

Objects (GSO) between boosted OpenLRM and the original
OpenLRM.

Method CDJ F-Score?
OpenLRM 0.14786 | 0.6562
OpenLRM (Ours) | 0.12158 | 0.6832

5. Limitation

We utilize a pre-trained aesthetic assessment model to eval-
uate and filter data based on a specific threshold. The data
we generated lacks a more comprehensive basis for evalua-
tion. In the future, we may employ a visual language model
to assess our data.
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