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Supplementary Material

1. Overview

The supplementary materials are structured as follows:
• We first analyze the reasons why our Mamba-based

architecture can achieve better performance than its
transformer-based counterparts in Section 2.

• We give more detailed illustrations about the dataset for
4D tasks in Section 3;

• More descriptions about the loss functions are provided
in Section 4.

• Additional experiments about network settings and abla-
tion studies are provided in Section 5.

• We analyze the prediction accuracy error bar in Section 6
and display more visualization results in Section 7.

2. Theoretical Analysis

Here, we give a theoretical analysis why our proposed
Mamba4D can achieve such excellent performance in mem-
ory consumption, inference time, and numerical stability,
compared to transformer-based counterparts.

a) Mamba eliminates quadratic attention storage
(O(N2d) → O(Nd) + O(d2)), leading to 87.5% lower
memory consumption by avoiding redundant attention
maps. b) For Transformers, attention decays over dis-
tance. Mamba propagates global dependencies via a struc-
tured state-space recurrence ht = Aht−1 + Bxt, enabling
5.36× faster inference. c) Numerical stability: Transform-
ers suffer from softmax-induced vanishing gradients, while
Mamba’s state-space formulation maintains stable gradient
flow, avoiding costly stabilization techniques. Stability is a
core issue in the optimization view in scalability.

3. Datasets

MSR-Action3D. The MSR-Action3D dataset [4] is com-
posed of 567 Kinect depth videos, including 20 action cate-
gories and 23K frames in total. We partition the train/test
split following [2, 3], and sample 2048 points for each
frame. Only point coordinates are available without point
colors. Point cloud videos are partitioned into multiple
equal-size clips. Video-level labels are directly used as clip-
level labels when training. For testing, the mean of clip-
level predicted probabilities is viewed as the video ones.

HOI4D. The HOI4D dataset [5] contains 2,971 training
videos and 892 test videos for action segmentation. Each
video sequence has 150 frames with each frame containing
2048 points. The dataset contains a total of 579K frames.

All frames are annotated with 19 fine-grained action classes
in the interactive scene.
Synthia 4D. The Synthia 4D [1] dataset is generated from
the Synthia dataset [6], including 6 driving scene videos.
Each video consists of 4 stereo RGB-D images captured
from the top of the car. 3D point cloud videos are obtained
from RGB and depth images. We follow [2] to split the
training (19888 frames)/ validation (815 frames)/ test (1886
frames) sets. The evaluation metric is the mean Intersection
over Union (mIoU).

4. Loss Functions
3D Action Recognition. In this task, the model is trained
to classify a sequence of video frames into predefined ac-
tion categories. The primary loss function employed is the
Cross-Entropy Loss, which is defined as follows:

L = −ΣN
i=1yi log(pi), (1)

where N is the total number of videos, yi is the true la-
bel for the i-th class and pi is the predicted probability for
the i-th class. The loss function supervises the model by
providing a scalar value that quantifies the discrepancy be-
tween the predicted action probabilities and the true action
labels. During the training process, the model parameters
are optimized to minimize this loss value.
4D Action Segmentation. In the task of 4D action seg-
mentation, the goal is to classify frames in a point cloud
sequence into action categories. The primary loss function
employed is the Cross-Entropy Loss, defined as:

L = −ΣN
i=1yi log(pi), (2)

where N represents the total number of frames in the point
cloud sequence, yi is the true action label for the i-th frame,
and pi is the predicted probability for the corresponding ac-
tion class. This loss function measures the prediction error
between the predicted and ground truth action labels across
the point cloud sequence frames.
4D Semantic Segmentation. In the task of 4D semantic
segmentation, the goal is to classify each point in a se-
quence of point clouds into semantic categories. The pri-
mary loss function employed in this task is the weighted
Cross-Entropy Loss, which is defined as follows:

L = −ΣN
i=1wiyi log(pi), (3)

where N is represents the total number of points in the point
cloud, wi is the weight for the i-th class to handle class im-
balance, yi is the true label for the i-th point, and the pi is



Table 1. Efficiency gains by replacing CNN or Transformer in
P4Transformer [2] with Mamba. ✓means replacing with Mamba.

Intra Inter Acc (%) Speed (ms) GPU (G)
CNN Trans 90.94 154 2.1
✓ Trans 91.36 202 2.3

CNN ✓ 91.67 56.7 1.5
✓ ✓ 92.68 102 1.8

Table 2. Comparison between disentangling or unifying spatial
and temporal modeling. Both two methods have the same accu-
racy, but the disentangling one has higher efficiency.

Modeling Acc (%) Speed (ms) Tokens
Disentangling 92.68 102.4 768
Unifying 92.68 154.0 1536

Table 3. Ablation studies on different anchor strategies. For short-
term modeling, smaller stride is better for capturing rapid move-
ments.

Method Acc (%) Method Acc (%)
Fixed (stride=2) 92.68% Fixed (stride=4) 89.19%
Fixed (srtide=8) 88.50% Multi-scale (stride=2,4,8) 90.24%

the predicted probability for the i-th class. The loss function
supervises the 4D semantic segmentation task by providing
a measure of the prediction error between the predicted se-
mantic labels and the true labels for each point in the point
cloud.

5. Additional Experiments

Efficiency Quantification. We quantify individual effi-
ciency gains by replacing each component with Mamba in
Table 1. Both replacements largely increase accuracy. How-
ever, replacing CNN with Mamba would degrade efficiency,
which is partially mitigated by replacing Transformer with
Mamba. The final model is a trade-off between accuracy
and efficiency.

Ablation Studies in Spatial-Temporal Modeling. We
follow [3] to disentangle the spatial and temporal dimen-
sions. We conduct ablation studies by comparing different
spatio-temporal modeling methods: disentangling or unify-
ing. From Table 2, both methods have the same recognition
accuracy, but the disentangling one has a higher efficiency.

Ablation Studies in Fixed or Adaptive Anchors. We add
ablation studies by extended anchor intervals or replacing
fixed anchors by adaptive multi-scale anchors in Table 3.
For the effective short-term modeling, smaller stride is bet-
ter for capturing rapid movements.
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Figure 1. Error bars of our estimated action recognition accu-
racy for 24, 32, and 36 frames as inputs. We can see a stable
performance with a small fluctuation around the mean accuracy.

6. Error Bar Analysis
We plot the error bar on the action recognition accuracy for
24, 32, and 36 frames as input in Fig. 1. From the figure, we
can see stable performance with a small fluctuation around
the mean accuracy.

7. Visualization
We show more visualization results in Fig. 2 and Fig. 3
respectively for the 4D action segmentation and semantic
segmentation. In Fig. 3, all the predicted segmentation la-
bels are highly overlapped with the Ground Truth, which
shows the perfect accuracy of our method.
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Figure 2. More visualization samples of the 4D action segmentation.
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Figure 3. More visualization samples of the 4D semantic segmentation.
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