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Supplementary Material

A. Additional Implementation Details

A.1. Target Discrimination Head

We proposed the target discrimination head to exploit the
discriminative information from the reference feature to lo-
cate the target. The head predicts the target box based on the
search token with the highest target score. Herein the tar-
get score is computed as the product of the template-search
similarity and foreground-background classification score.
For contrastive learning, we treat the patches inside the tar-
get box as positive and others as negative. We will first ex-
tract a unified reference token Tuni. In the BBOX and NL
tasks, Tuni is extracted based on the template feature and
the language feature, respectively. In the NL&BBOX task,
we perform mean pooling on the template and language fea-
tures to obtain Tuni. Subsequently, we apply two separate
linear layers to transform Tuni into target token Ttgt and
background token Tbgd. Ttgt and Tbgd are used to compute
the similarity with the search region feature, generating the
target score and the background score for each search re-
gion token. These scores are then utilized to select the final
output bounding box. We employ the binary cross-entropy
target score map loss Ltgt, whose groundtruth is generated
based on the bounding box, as the contrastive learning loss
for target discrimination. Finally, the prediction with a tar-
get score exceeding the threshold will be used to update the
template video clip. The threshold is set to 0.8.

A.2. Training Settings

In the intra-video contrastive learning, we utilize 1 posi-
tive sample and 8 negative samples. In the inter-video con-
trastive learning, we utilize 1 positive sample and 224 neg-
ative samples. The multimodal contrastive learning is per-
formed in the last two layers of the preliminary feature ex-
traction stage and every module of the time-evolving mul-
timodal fusion module. For training datasets, the MGIT
dataset consists of three subsets: train, val, and test, each
containing 105, 15, and 30 videos, respectively. We use its
train subset to train our model. Additionally, MambaVLT is
trained using mixed reference inputs, including vision-only,
language-only, and a combination of both. For GOT-10K,
which lacks textual annotations, we use the dataset as train-
ing data with only vision references.

B. More Experimental Results

B.1. Efficiency Analysis

We employ the number of model parameters and floating-
point operations (FLOPs) to evaluate the model size and
computational complexity [22, 34]. Table A presents a de-
tailed comparison with state-of-the-art trackers in param-
eter count, FLOPs, and FPS. Among the trackers, Mam-
baVLT has the fewest parameters and achieves the lowest
FLOPs. Nevertheless, we observe that the lowest FLOPs
do not lead to the fastest inference speed for MambaVLT.
This is because the core component of our feature extrac-
tor and multimodal encoder, i.e., Multi-directional Selec-
tive Scan, lacks sufficient parallelization in implementation,
leading to longer inference time despite lower FLOPs in
these two modules, as shown in Table A. As the search re-
gion size increases, the computational complexity of Mam-
baVLT grows slowly, while that of UVLTrack shows a rapid
quadratic growth trend. JointNLT reduces computational
complexity by introducing the Swin Transformer [35].
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Figure A. Computational complexity comparison with different
search region image scales. OOM represents the computation cost
is out of memory.

To achieve a balance between tracking accuracy and
tracking FPS, we propose a lightweight variant of Mam-
baVLT, termed MambaVLT-light, whose tracking FPS is
50 on RTX 2080 Ti. In contrast to MambaVLT, the
MambaVLT-light reduces the depth of the four stages in the
vision encoder to 1, 1, 2, and 1, substitutes the modality-
guided bidirectional scan with a single bidirectional scan,
and removes the Selective Locality Enhancement Block.
The performance is shown in Table B. The FLOPs of
MambaVLT-light with three templates is 19.28 G, which
is much lower than others.



Table A. Analyses on Computational Performance. ‘# z’ denotes the template number. All models are tested on RTX2080Ti.

Method # z Feat. Extraction Multimodal Encoder Decoder Pred. Head FPS Params FLOPs
JointNLT 1 18 ms / 81 G 3 ms / 6 G 5 ms / 1.5 G 2 ms / 1.5 G 35 193 M 90 G
MMTrack 1 23 ms / 105 G 0.5 ms / 0.2 G 4.5 ms / 1 G - 36 217 M 106 G
UVLTrack-B 1 9 ms / 36 G 6 ms / 31 G - 3 ms / 4 G 55 169 M 71 G
MambaVLT † 1 11 ms / 25 G 14 ms / 21 G 6 ms / 2 G 2 ms / 3 G 30 149 M 51 G
MambaVLT 3 11 ms / 35 G 15 ms / 29 G 6 ms / 3 G 2 ms / 3 G 29 149 M 70 G

Table B. Comparison of MambaVLT-light and other methods in
the NL&BBOX task.

Tracker TNL2K OTB99
AUC Prec AUC Prec

UVLTrack-B [37] 63.1 66.7 69.3 89.9
MambaVLT 66.5 69.9 72.2 94.4
MambaVLT-light 62.5 63.1 70.5 91.2

B.2. More Results of Semi-reference-free Tracking
To analyze the effectiveness of state space memory, we de-
sign the semi-reference-free tracking paradigm, in which
the reference data (language or initial bounding box) is used
by tracker only in the first frame. From the second frame,
the tracker needs to locate the target without explicitly us-
ing the reference data. The main challenge is extracting and
memorizing target information based on the reference input
in the first frame. We conduct the SRF-based experiments
without retraining. As shown in Figure C, MambaVLT
is able to track the target even without reference data after
the first frame, demonstrating the effectiveness of the state
space memory in target information retention.

Figure B illustrates the results of SRF on three se-
quences where the targets undergo both significant appear-
ance changes and occlusions. SRF tracks the targets sta-
bly, suggesting that state space memory effectively models
the varying target states and facilitates tackling these chal-
lenges. We will provide more analyses.

B.3. Analyses of the MS module
The modality weights in MSM are dynamically predicted
based on the textual and visual tokens. To analyze its effect,
we conducted experiments by directly setting the modality
weights to different fixed values. Table C shows that the
fixed weight settings lead to performance drops, validating
the effectiveness of our dynamic mechanism.

B.4. Extensive Experiments on MGIT
In the MGIT [24] dataset, in addition to the language de-
scriptions of the targets in the first frames, it also provides
corresponding natural language specifications of the targets
in certain subsequent frames. Therefore, without retrain-
ing the model, we update the language information dur-
ing inference with the latest natural language description,

Table C. Comparison between dynamic and fixed modality weight.

Variants
NL&BBOX

AUC PRE N PRE
wl=0.25; wv=0.75 64.2 66.3 88.8
wl=0.5; wv=0.5 65.4 67.8 89.6
wl=0.75; wv=0.25 65.5 67.8 89.7
Dynamic Modality Adjustment 66.5 69.9 90.9

#0002 #0054 #0065 #0080 occlusion

#0002 #0155 occlusion #0375 #0544

(a) NLBBOX:  the first 
girl on the first row    

(b) NLBBOX: a man who 
wearing black shirt and 
b l u e  t r o u s e r s  w i t h  a 
handsome yellow hair 

Ground Truth Ours Ours (SRF) UVLTrack

#0002 #0077 #0176 occlusion #0355
(c) NL: the blue solider in 
the middle of chessboard 

occlusion: 55-150

occlusion: 140-163

occlusion: 104-177

Figure B. Results of SRF in 3 challenging sequences.

Table D. Extensive experiments of natural language updating on
MGIT. * denotes the results obtained by updating the language
descriptions in the inference process without retraining the model.

Tracker AUC Prec N prec SRIoU

BBOX
MambaVLT 65.7 51.6 72.9 60.4

NL
MambaVLT 64.6 50.3 71.2 58.7
MambaVLT* 65.4 51.5 72.3 60.1

NL&BBOX
MambaVLT 69.9 58.9 77.9 67.9
MambaVLT* 70.2 59.1 79.0 68.6

to evaluate whether the state space memory can update the
target feature based on the new description, thereby improv-
ing tracking accuracy. Notably, all the experiments are con-
ducted using the action granularity of the MGIT dataset.

We introduce a new metric, success rate (SR), to align
with the official experiments in the MGIT dataset. The pre-
diction with the intersection over union IoU that is higher
than the threshold θs is regarded as a successful prediction.
SR denotes the percentage of successfully tracked frames.
According to Table D, in the NL and NL&BBOX tasks, par-
ticularly the NL task, performance improves when natural
language information is updated with the latest descriptions.



#0008 #0140 #0255 #0372 #0467

BBOX-BlurFace

BBOX-Dancer

#0008 #0053 #0097 #0145 #0201

#0001 #0156 #0298 #0424 #0562

NL-CartoonKobe_video_05_done: the basketball in the hand 

#0002 #0128 #0354 #0751 #0967

NL-Chase_video_U02-Done: the man chased by the character controled by player  

Ground Truth Ours Ours (SRF) UVLTrack

Figure C. Effectiveness analysis of the time-evolving state space memory in BBOX and NL tasks. Under the semi-reference-free setting,
the state space memory can still effectively extract and retain target features for accurate target localization compared to MambaVLT and
UVLTrack using the standard tracking settings, validating the effectiveness of the state space memory.

This demonstrates that the state space memory is capable of
modeling varying information.

B.5. Qualitative Results
Table E presents the detailed results and the corresponding
reference data of several sequences for robustness evalua-
tion. The results indicate that MambaVLT has strong ro-
bustness against interference from the initial reference in-
formation, because our model can adaptively update the

reference features and dynamically weigh multimodal in-
formation for modality selection. In Figure D, we evaluate
MambaVLT on six sequences characterized by drastic target
variations. MambaVLT can still track the targets accurately,
which demonstrates the introduction of time-evolving state
space memory can help the model to retain long-term target
features to update reference features for modeling long-term
target variations adaptively.



BBOX-Cartoon_WuYa

BBOX-Chasing_video_01

NL-SportGirl_video_03_done: the girl at the top 

Ground Truth Ours UVLTrack

#0121#0002 #0232 #0351 #0500

#0002 #0175 #0456 #0667 #1008

NL-Darkwomen_video_08L: the woman with white hair   

#0001 #0188 #0476 #0665 #0958

#0001 #0076 #0189 #0257 #0368

NL&BBOX-advSamp_Cartoon_YellowPeople_video_Z01-Done: the yellow people who is looking at the light  

#0002 #0108 #0367 #0578 #0786

NL&BBOX-ManHat_test_002_done: the hat on the man's head   

#0002 #0268 #0568 #0758 #1088

Figure D. Visualized results of the MambaVLT and the UVLTrack method on six challenging sequences with drastic changes. Our Mam-
baVLT performs well with the aid of the time-evolving state space memory for long-term target feature retention and adaptive reference
feature update, while the UVLTrack with discrete context prompts struggles with these sequences.



Task Initial Frame Language Description Interference UVLTrack MambaVLT

BBOX - Distractor 56.1% 70.2%

BBOX - Viewpoint
Change 64.2% 73.4%

BBOX - Occlusion 52.9% 66.1%

NL
we want to track a man

holding an umbrella under
street lamp

Low Light 1.1% 66.3%

NL the fourth fish from right to
left Distractor 16.7% 42.5%

NL
the player wears white suit
with twenty-three on this

back
Distractor 4.0% 64.4%

NL&BBOX the rightmost pedestrian in
white Distractor 8.5% 75.4%

NL&BBOX the man on the bottom right
corner Low Light 16.3% 72.7%

NL&BBOX the person on the corridor Occlusion 13.4% 41.1%

Table E. Robustness evaluation in terms of AUC score on several challenging sequences. It demonstrates that the MambaVLT significantly
improves vision-language tracking performance by updating reference features adaptively in cases where distractions exist between the
target and reference information.


	Introduction
	Related Work
	Vision-language Tracking
	State Space Models
	MambaVLT
	Preliminaries: SSM and Mamba
	Overall Framework
	Time-Evolving Multimodal Fusion Module
	Modality-Selection Module
	Training Objective

	Experiments
	Implementation Details
	The Analysis of State Space
	Comparison with state-of-the-art trackers
	Ablation Study

	Conclusion
	Acknowledgments
	Additional Implementation Details
	Target Discrimination Head
	Training Settings


	More Experimental Results
	Efficiency Analysis
	More Results of Semi-reference-free Tracking
	Analyses of the MS module
	Extensive Experiments on MGIT
	Qualitative Results



