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Supplementary Material

A. Pseudo-Code of SAGE

The pseudo-code of SAGE is shown in Algorithm 1.

Algorithm 1: Semi-supervised Aggregation for
Globally-Enhanced Ensemble (SAGE)

Input: Set of clients C; number of online clients in
each round M ; number of communication
rounds T ; number of local training epochs
E; weak augmentation α(·); strong augmen-
tation A(·); confidence threshold τ ; learning
rate γ; unsupervised loss weight µu; dynamic
correction coefficient λ(·); sensitivity hyper-
parameter κ

1 ServerExecutes:
2 Randomly initialize global model parameters θg;
3 for t = 0 to T − 1 do
4 Randomly select online clients CM ⊆ C;
5 foreach client Cm ∈ CM in parallel do
6 θl,m ← ClientUpdate(θg)
7 end
8 |D| =

∑
Cm∈CM

(|Ds
m|+ |Du

m|);
9 θg ← 1

|D| ·
∑

Cm∈CM
((|Ds

m|+ |Du
m|) · θl,m);

10 end
11 return θTg

12 ClientUpdate(θg):
13 θl ← θg;
14 for e = 0 to E − 1 do
15 foreach (x,y) ∈ Ds,u ∈ Du do
16 Ls ← LCE(pl(y|x,y));
17 pl ← fl(α(u));
18 pg ← fg(α(u));
19 Calculate ŷ by CPG in Eq. (1);
20 if max(pl) ≥ τ then
21 ∆C = |max(pl)−max(pg)|;
22 λ← exp(−κ ·∆C);
23 δl ← one-hot(argmax(pl));
24 δg ← one-hot(argmax(pg));
25 Calculate ŷ by CDSC in Eq. (6);
26 end
27 Lu ← KL(pl(A(u)) ∥ ŷ(u));
28 θl ← θl − γ∇θ(Ls + µu · Lu);
29 end
30 end
31 return θl, Ds, Du

In the local training process of SAGE, standard super-
vised training is initially performed on labeled data (line 16)
to compute Ls. Next, CPG assigns initial pseudo-labels ŷ us-
ing Eq. (1) (lines 16 to 19), thereby enhancing the utilization
of unlabeled data. Subsequently, the confidence discrepancy
∆C between the local and global models is calculated, and
the pseudo-labels are dynamically refined by computing the
correction coefficient λ (lines 20 to 25) using CDSC. Finally,
the KL divergence between the corrected pseudo-labels and
the strongly augmented predictions of the local model is
calculated as the unsupervised loss Lu. Upon completing
local training, clients upload the updated local models and
dataset sizes to the server for standard federated aggregation
(lines 4 to 9).

B. Additional Analysis of Preliminary Study
In Section 4.1, we identified an intriguing phenomenon: as
data heterogeneity increases, the confidence discrepancy be-
tween local and global models progressively grows. The pre-
dictions of the local model become more aggressive, whereas
those of the global model grow increasingly conservative, as
described in Observation 1 and 2. In this section, we perform
a more comprehensive observation and analysis of this phe-
nomenon. First, we provide additional observations in Ap-
pendix B.1. Next, in Appendix B.2, we derive the underlying
causes of this phenomenon and present a analytical process
centered on Remark 1 and 2. Finally, in Appendix B.3, we
design experiments to validate our analytical conclusions.

B.1. Additional Exploratory Experiments
To more comprehensively illustrate Observation 1 and 2, we
follow the experimental setup of Fig. 2(a) and adjust the
threshold values for displaying confidence distributions. As
shown in Fig. 9, we observe similar patterns as in Fig. 2(a) of
the main text: as data heterogeneity increases, the confidence
of the local model tends to fall into high-confidence regions,
while the global model shows the opposite trend.

Additionally, to expand on the comparison of pseudo-
label counts between local and global models in Fig. 2(b),
we conducted further experiments across different hetero-
geneity settings. As shown in Fig. 11, at varying levels of
heterogeneity, the local model consistently maintains a high
utilization rate of unlabeled data in the early training stages.

B.2. Analysis of Local-Global Discrepancies
In Section 4.1, we observed that as heterogeneity intensi-
fies, the pseudo-labeling tendencies of the local and global
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(b) Confidence > 0.96.
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(d) Confidence > 0.98.
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(e) Line Chart of Confidence Distribution.

Figure 9. Pseudo-label distribution of local and global models
at different confidence distribution thresholds. Each subfigure
represents a different threshold level, and the line chart shows the
overall confidence distribution.
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(b) λ under different data distribu-
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Figure 10. Ablation of λ on CIFAR-100.

models change in markedly different ways. These specific
phenomena are detailed in Observations 1 and 2. In this
section, we analyze the underlying reasons.

Local model. For the local model, we define the entropy
of the local unsupervised data distribution as H(Qu(y)),
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(a) α = 1.
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(b) α = 10.

Figure 11. The number of pseudo labels for local and global models
under the additional heterogeneity setting.

Table 5. Ablation studies on soft label.

Method Label α = 0.1 α = 0.5 α = 1

FixMatch-LPL
Hard 49.32 49.67 49.55
Soft 31.96 33.17 32.61

FixMatch -GPL
Hard 48.96 51.80 52.19
Soft 48.68 50.77 48.64

SAGE
Hard 54.18 55.82 56.06
Soft 53.05 54.53 55.90

aiming to explore the relationship between the entropy of the
local data distribution H(Qu(y)) and the entropy of model
predictions H(p(y|x,Du)). For p(y|Du), during local train-
ing, since Nu ≫ Ns, as the local training time t increases,
the local model adjusts p(y|Du) based on the pseudo-labels
ŷil of the unlabeled sample u:

p(t+1)(y|Du) = γ ·
(
p(ŷil = y|x,Du)− p(t)(y|Du)

)
+ p(t)(y|Du). (10)

As time t progresses, the prior distribution p(y|Du) grad-
ually couples with the true local unsupervised distribution
Qu(y), this indicates a correlation between H(p(y|Du)) and
H(Qu(y)). For p(y|x,Du), we expand it using Bayes’ the-
orem as follows:

p(y|x,Du) =
p(x|y,Du) · p(y|Du)

p(x|Du)
, (11)

here, p(y|Du) denotes the prior distribution of classes,
p(x|y,Du) is the feature distribution, and p(x|Du) is the
marginal distribution.The entropy H(p(y|x,Du)), when ex-
panded according to Bayes’ theorem, can be expressed as:

H(p(y|x,Du)) = −
∑
y

p(y|x,Du) log p(y|x,Du)

= −
∑
y

(
p(x|y,Du) · p(y|Du)

p(x|Du)

)
· log

(
p(x|y,Du) · p(y|Du)

p(x|Du)

)
. (12)
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(a) Pseudo-label entropy of the global model under different heterogeneity.
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(b) Pseudo-label entropy of the local model under different heterogeneity.

Figure 12. Changes in the pseudo-label confidence entropy of the global and local model as heterogeneity increases. Experiments show that
as heterogeneity increases, global pseudo-label entropy will gradually increase, while local pseudo-label entropy will gradually decrease.
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(a) Pseudo-labeling accuracy with
α = 0.5.

0 100 200 300 400 500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ps
eu

do
-L

ab
el

in
g 

Nu
m

be
r

×10
5

SAGE w/o CPG
SAGE w/ CPG

(b) Comparison of the number of
pseudo-labels with α = 0.5.
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(c) Pseudo-labeling accuracy with
α = 1.
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(d) Comparison of the number of
pseudo-labels with α = 1.

Figure 13. Additional ablation of CPG on CIFAR-100.
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Figure 14. Ablation study on κ.

Consider the term associated with the prior distribution
p(u|Du):

H(p(y|x,Du)) = −
∑
y

p(x|y,Du) · p(y|Du)

p(x|Du)
log p(y|Du)

−
∑
y

p(x|y,Du) · p(y|Du)

p(x|Du)
log p(x|y,Du),

(13)
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(a) Convergence curves of SAGE
and other baseline methods with
α = 0.1.
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(b) Convergence curves of SAGE
and other baseline methods with
α = 0.5.

Figure 15. Additional convergence curves under different hetero-
geneities.

the first term represents the entropy of the model’s prior
distribution:

H(p(y|Du)) = −
∑
y

p(y|Du) log p(y|Du). (14)



The second term encapsulates a component that quantifies
the feature distribution:

KL(p(x|y,Du) ∥ p(x|Du)) =
∑
y

p(y|Du) log
p(x|y,Du)

p(x|Du)
.

(15)
Finally, the entropy of the predictive distribution
H(p(y|x,Du)) can be written as follows:

H(p(y|x,Du)) = H(p(y|Du))

+ KL
(
p (x|y,Du)

∥∥∥∥ p (x|Du)

)
︸ ︷︷ ︸

Contribution of features

, (16)

This indicates that H(p(y|x,Du)) can be decomposed
into the entropy of the prior distribution H(p(y|Du)) and a
KL-divergence term contributed by the feature distribution.
Under the heterogeneous setting, the local model struggles
to establish robust feature discrimination across clients in
the early stages of training, limiting the influence of the fea-
ture distribution on the predictive distribution. This implies
that H(p(y|x,Du)) is mainly influenced by H(p(y|Du)),
i.e., H(p(y|x,Du)) ∼ H(p(y|Du)). Therefore, we con-
clude that H(p(y|x,Du)) is influenced by H(p(y|Du)) and
correlates with H(Qu(y)). As the degree of heterogene-
ity increases, H(Qu(y)) decreases, consequently affecting
H(p(y|x,Du)) and causing it to decrease accordingly.

Global model. The global model updates by aggregating
parameters from multiple local models, it aims to learn a
“compromise” global distribution that balances all client-side
local distributions. The global model’s confidence predic-
tions are not directly influenced by the local class distri-
bution of any specific client. However, As the degree of
non-IIDness increases, the differences between local class
distributions become more pronounced. The global model
cannot simultaneously satisfy the extreme requirements of
each local data distribution, so it makes high-confidence pre-
dictions only for samples with greater consistency across
clients:

p(y|x, θg) ≈
1

|CM |

|CM |∑
m=1

p(y|x, θl,m). (17)

As a result, the global model’s confidence predictions in-
creasingly focus on classes with higher consistency across
clients, demonstrating more conservative prediction behav-
ior.

B.3. Experimental Support for Analysis Results
To support the analytical conclusions in Appendix B.2 and
Remark 1 and 2 in Section 4.1, we conducted further ex-
ploratory experiments on CIFAR-100, analyzing how the
entropy of pseudo-label confidence for the local and global

models changes with heterogeneity. As shown in Fig. 12(a),
when data heterogeneity intensifies, the entropy of the global
model’s pseudo-label confidence tends to increase, indicat-
ing greater uncertainty. This causes the global model’s
pseudo-labeling strategy to become more conservative. Con-
versely, in Fig. 12(b), the entropy of the local model’s
pseudo-label confidence tends to decrease as data hetero-
geneity increases, especially in the early stages of training
when the local model has not yet developed robust feature dif-
ferentiation capabilities. This suggests that the local model’s
predictions become overly reliant on the local imbalanced
distribution, leading to overfitting and overly confident pre-
dictions.

C. Additional Ablation Study
In this section, we conduct further studies on the CPG and
CDSC modules of SAGE, building on the ablation experi-
ments in the main manuscript to demonstrate the effective-
ness of these components.

C.1. Corrected Soft Label or Direct Soft Label?
The corrected soft labels produced by SAGE can mitigate
the harmful effects of incorrect predictions. Additionally,
we investigate whether directly using the model’s predicted
soft labels could achieve a similar effect. As shown in Tab. 5,
directly using soft labels results in decreased performance,
even worse than directly using hard labels. This is because
directly using model predictions as soft labels suppresses all
classes except the predicted one, thereby failing to mitigate
the harm of incorrect pseudo-labels and potentially intro-
ducing extra noise. In contrast, the soft labels generated by
SAGE ensure that prediction signals from both models are
preserved, thereby enhancing their consensus.

C.2. Ablation Study on the correction coefficient λ
We define the dynamic correction coefficient λ to regulate
the contribution of local and global pseudo-labels. We con-
duct an in-depth study of λ on CIFAR-100, as shown in
Fig. 10: (1) According to Fig. 10(a), λ increases as hetero-
geneity intensifies, indicating that SAGE effectively detects
the increase in heterogeneity and subsequently relies more
on the global model. (2) According to Fig. 10(b), λ for lo-
cal minority classes is smaller than that for local majority
classes, suggesting that local minority classes tend to rely
more on the predictions of the global model. (3) As training
progresses, λ increases, and the gap between majority and
minority narrows, suggesting an increase in the consensus
between the models, consistent with the conclusion in Fig. 8.

C.3. Additional Ablation Study on CPG
In Fig. 7 of Section 5.5, we conducted the effectiveness anal-
ysis of CPG under the setting of α = 0.1, confirming that
CPG can significantly improve the quantity and quality of



Table 6. Comparison of convergence rates between SAGE and other baseline methods with α = 0.1.

Acc. 30% 40% 45% 50%
Method Round ↓ Speedup ↑ Round ↓ Speedup ↑ Round ↓ Speedup ↑ Round ↓ Speedup↑

FixMatch-LPL 119 ×1.00 242 ×1.00 360 ×1.00 562 ×1.00
FixMatch-GPL 114 ×1.04 226 ×1.07 322 ×1.12 524 ×1.07

FedLabel 94 ×1.27 175 ×1.38 259 ×1.39 429 ×1.31
FedDB 103 ×1.16 206 ×1.17 321 ×1.12 None None

FedDure 114 ×1.04 234 ×1.03 341 ×1.06 542 ×1.04
SAGE 60 ×1.98 124 ×1.95 174 ×2.07 267 ×2.10

Table 7. Comparison of convergence rates between SAGE and other baseline methods with α = 0.5.

Acc. 30% 40% 45% 50%
Method Round ↓ Speedup ↑ Round ↓ Speedup ↑ Round ↓ Speedup ↑ Round ↓ Speedup↑

FixMatch-LPL 121 ×1.00 221 ×1.00 334 ×1.00 546 ×1.00
FixMatch-GPL 113 ×1.07 210 ×1.05 274 ×1.22 419 ×1.30

FedLabel 83 ×1.46 160 ×1.38 222 ×1.50 366 ×1.49
FedDB 94 ×1.29 205 ×1.08 282 ×1.18 492 ×1.11

FedDure 110 ×1.10 222 ×1.00 315 ×1.06 552 ×0.99
SAGE 55 ×2.20 105 ×2.10 159 ×2.10 241 ×2.27

pseudo-labels. In this section, we conducted additional ex-
periments under different heterogeneity settings to verify the
robustness of CPG. As shown in Fig. 13, under the settings
of α = {0.5, 1}, CPG is still able to generate high-accuracy
pseudo-labels in the early stages of training, supplementing
the local model’s pseudo-label predictions for local minority
classes and further enhancing the utilization of unlabeled
data.

C.4. Ablation Study on the Sensitivity Coefficient κ

In the implementation of CDSC, κ in Eq. (3) adjusts the sen-
sitivity of the correction coefficient λ(u) to the confidence
discrepancy ∆C(u). On CIFAR-100, we divided clients
with α = 1 and varied κ in increments of 2 to study the
robustness of SAGE with respect to κ. The results shown in
Fig. 14 indicate that CDSC remains effective regardless of
the value of κ. As κ increases, SAGE performance stabilizes,
indicating low sensitivity to the hyperparameter κ.

In our experimental setup, we chose the value of κ heuris-
tically: we referenced the confidence interval of pseudo-
labels in FixMatch, Iτ = [0.95, 1], aiming for λ(·) to allo-
cate equal weight to the local and global models when the
confidence discrepancy reaches the interval length |Iτ | =
0.05. Thus,

exp(−κ∗ · |Iτ |) = 0.5. (18)

Solving this equation, we find κ∗ ≈ 13.86. In our experi-
mental setups, κ∗ yielded the best results.

D. Additional Comparison with Baselines

To demonstrate the effectiveness of SAGE, we present a com-
parison between SAGE and baseline methods with a 10%
labeling ratio in Section 4 of the main manuscript. In this
supplementary material, we further illustrate the robustness
of SAGE with less or more labeled data by comparing SAGE
with baseline methods at 20% labeling ratio. Additionally,
to verify that SAGE consistently improves convergence rate,
we compare the convergence of SAGE and baseline methods
under varying degrees of heterogeneity.

D.1. Convergence Rate

In Section 5.3 of the main manuscript, we conducted exper-
iments under the α = 1 setting, where the SAGE method
significantly improved model convergence speed and test
accuracy on the CIFAR-100 dataset. Here, we provide a
detailed comparison of SAGE and baseline performance un-
der different heterogeneity settings. As shown in Fig. 15,
Tab. 6 and Tab. 7, SAGE still achieves substantial accel-
eration in early convergence speed under the settings of
α = {0.1, 0.5}.

D.2. Labeling Ratio

Tab. 8 present SAGE performance compared to baseline
methods at 20% labeling ratios, respectively. SAGE consis-
tently achieves the best performance across different labeling
ratios.



Table 8. Experimental results on CIFAR-10, CIFAR-100, SVHN and CINIC-10 under 20% label. Bold text indicates the best result, while
underlined text indicates the second-best result. The last row presents the improvement of SAGE over existing methods.

CIFAR-10 CIFAR-100 SVHN CINIC-10Methods
α = 0.1 α = 0.5 α1 α = 0.1 α = 0.5 α1 α = 0.1 α = 0.5 α1 α = 0.1 α = 0.5 α1

SL methods
FedAvg 86.37 87.06 87.97 45.72 46.57 47.55 88.37 89.05 89.97 66.24 68.29 69.21
FedProx 86.78 88.11 88.44 45.96 47.33 47.89 87.99 88.56 91.10 65.53 69.57 69.91

FedAvg-SL 90.46 91.24 91.32 67.98 68.83 69.10 94.11 94.41 94.40 77.82 80.42 81.29
SSL methods

FixMatch-LPL 87.22 89.61 89.23 56.80 57.35 57.59 93.66 94.11 94.21 72.51 75.14 76.03
FixMatch-GPL 88.55 89.69 89.83 57.02 57.85 57.85 93.89 94.12 94.17 76.14 77.35 77.82

FedProx+FixMatch 87.47 89.46 89.56 57.44 57.91 57.87 93.60 93.93 94.05 72.36 75.15 76.06
FedAvg+FlexMatch 76.36 78.66 78.76 58.24 58.44 58.79 56.94 58.58 62.19 73.32 75.75 75.95

FSSL methods
FedMatch 82.44 84.13 85.21 45.07 47.29 48.40 93.01 93.58 93.76 66.94 68.60 72.34
FedLabel 87.37 88.86 88.93 58.63 58.98 59.23 93.44 94.38 94.59 60.13 67.30 72.22
FedLoke 84.57 85.26 86.98 53.87 53.67 54.56 93.26 93.45 93.57 70.63 71.61 71.78
FedDure 88.56 89.63 89.95 56.14 57.23 57.89 93.81 94.42 94.37 76.21 77.13 77.75

FedDB 85.19 86.36 86.65 52.81 54.62 55.48 93.22 93.50 94.27 74.18 75.00 75.65
89.87 90.53 90.54 60.86 61.49 62.01 94.31 94.56 94.68 77.51 78.23 78.77SAGE (ours) ↑ 1.31 ↑ 0.84 ↑ 0.59 ↑ 2.23 ↑ 2.51 ↑ 2.78 ↑ 0.42 ↑ 0.14 ↑ 0.09 ↑ 1.30 ↑ 0.88 ↑ 0.95

airplane

automobile
bird cat

deer
dog fro

g
horseshiptru

ck

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Cl
ie

nt

= 0.1

airplane

automobile
bird cat

deer
dog fro

g
horseshiptru

ck

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

= 1

(a) Labeled Distribution
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(b) Unlabeled Distribution

Figure 16. Distribution of labeled and unlabeled data across clients under different heterogeneity levels, using CIFAR-10 with 10% labeling
as an example. The size of each bubble represents the count of data points of class y on client k.

E. Class Distribution Mismatch
In this work, our experiments follow the Class Distribution
Mismatch setting, where both labeled and unlabeled data
within each client adhere to different heterogeneous distri-
butions. Using CIFAR-10 as an example, Fig. 16 shows the
visualized data distribution across 20 clients.
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