MonoSplat: Generalizable 3D Gaussian Splatting from
Monocular Depth Foundation Models

Supplementary Material

A. More Details
A.l. Data

During training, we employ our custom data loaders for
all methods and progressively increase the spacing between
reference views. Specifically, we implement a linear in-
crease in view distances over the first 150,000 training
steps: the minimum distance between reference views in-
creases from 25 to 45, while the maximum distance expands
from 45 to 192. To ensure a fair comparison with previ-
ous works [, 6], input images are resized to a resolution
of 256x256. Our pre-processing filters out invalid images,
including those with misaligned sizes and images where the
maximum field of view exceeds 100 degrees.

A.2. Model

For the frozen depth encoder, we adopt three variants of
Depth Anything V2 [50], which are based on ViT-S, ViT-
B, and ViT-L, respectively. For these variants, we extract
features of intermediate layers of [2, 5, 8, 11], [2, 5, 8, 11],
and [4, 11, 17, 23], respectively, and feed these features to
the following DPT decoder and the original depth decoder.
For DPT, we set the final output dimension as 64 to balance
the efficiency and effectiveness. Following DPT, the multi-
view transformer adds position encoding for different views
and outputs features of dimension 64.

For the cost volume construction, we use 128 planes and
calculate the 2D cost volume, similar to [6], followed by the
UNet-style refinement. The cost volume UNet uses a base
feature dimension of 128, which was empirically found to
balance model capacity and efficiency well. We maintain
consistent channel dimensions across three downsampling
stages using multipliers [1,1,1]. Self-attention is applied at
1/4 resolution to enhance feature correlation.

After obtaining the predicted depths, we combine them
with features for further Gaussian parameter prediction,
achieved by a depth UNet. The depth UNet employs
a base feature dimension of 32, with channel multipli-
ers [1,1,1,1,1] across five downsampling stages. Attention
mechanisms are incorporated at resolution 1/16 to capture
long-range dependencies. Finally, we constrain the Gaus-
sian scale within the range [0.5, 15.0]. The minimum scale
of 0.5 ensures sufficient detail capture at fine levels. The
maximum scale of 15.0 prevents overly large Gaussians
while allowing coverage of broader regions. We use spher-
ical harmonics of degree 4 to represent view-dependent ap-
pearance.

Table 4. Ablation on the backbone. We perform ablation studies
using different backbones trained solely on Re10K [55] with 200k
iterations, and test on the in-domain test set of RelOk and out-
domain test set of DTU [12].

Rel0k Rel0k—DTU
PSNR1 SSIMt | PSNRT  SSIM{

DINOv2 26.14 0.872 13.45 0.342
UniMatch 26.03 0.868 14.92 0.465

DAMv2-S 26.50 0.870 15.24 0.604
DAMv2-B 26.83 0.875 15.62 0.620
DAMv2-L 27.12 0.878 15.95 0.608

Method

A.3. Training

Our default model training is conducted on a single A100
GPU with a batch size of 14. Each batch comprises one
training scene consisting of two input views and four tar-
get views. Following pixelSplat [1] and MVSplat [6], we
progressively increase the frame distance between input
views throughout the training process. The near and far
depth planes are empirically set to 0.5 and 100 for both
RealEstate 10K and ACID datasets. For the DTU dataset,
we utilize the depth bounds of 2.125 and 4.525.

B. More Experimental Analysis

All experiments in this section follow the same settings as
in Sec. 4.1 unless otherwise specified, which are trained and
tested on RealEstate10K [55]. To investigate our hypothe-
sis regarding the advantages of monocular depth foundation
model features for generalizable Gaussian reconstruction,
we conducted experiments with various frozen backbones,
including DINOv2 (used in pixelSplat [1]) and UniMatch
(employed in MV Splat [6]). The results, as presented in the
Table 4, show substantial deterioration in both in-domain
and out-of-domain generalization performance, validating
the essential role of depth foundation models. Furthermore,
our exploration of different Depth Anything v2 variants re-
vealed a positive correlation between model size and perfor-
mance, with larger models achieving better reconstruction
quality and generalization capabilities.

C. More Visual Comparisons

In this section, we provide more visual comparisons of ge-
ometry reconstruction in Figure 7 and cross-dataset gener-
alization results in Figure 8.
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Figure 7. Additional visual comparisons of geometry reconstruction on RealEstate10k [S5]. All models were trained on a diverse
collection of RealEstate10k scenes and evaluated on previously unseen scenes from the test split. For reference, we provide two rendered
depth maps from the input views. Our method demonstrates superior reconstruction quality across different viewpoints and scene structures.
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Figure 8. More visual comparisons of cross-dataset generalization from RealEstate10k [55] to DTU [55]. Models are trained solely
on RealEstate10k, and tested on novel scenes from DTU. Our method shows superior rendering quality compared to previous methods.
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