MonoTAKD: Teaching Assistant Knowledge Distillation for Monocular 3D
Object Detection

Supplementary Material

Due to the page constraint of the main paper, we provide
more quantitative and qualitative results in this supplemen-
tary material, which is organized as follows:

» Dataset description of the KITTI raw set in Section A.

* The implementation and training details for the KITTI3D
and nuScenes datasets are documented in Section B.

* Justification and analysis of the TA model in Section C.

* More quantitative results for MonoTAKD in Section D.

* More ablation studies for MonoTAKD in Section E.

¢ Qualitative results for MonoTAKD in Section F.

A. Datasets

KITTI Raw. The KITTI Raw dataset includes approxi-
mately 48K unlabeled data used for semi-supervised train-
ing. Following [12, 29], we train on the Eigen clean subset
(22K) of the KITTI raw dataset and evaluate on the KITTI
test set (3,769). The evaluation metric and the implementa-
tion of KITTI raw are the same as the KITT3D dataset.

B. Implementation Details

For the KITTI3D dataset, we use a pre-trained Second [45]
as the LiDAR-based teacher. Both the camera-based TA and
camera-based student are derived from CaDDN [32], using
ResNet50 as their backbone. In addition, we use PointPil-
lar [20] as the BEV detector. Initially, we trained the TA
model using a pre-trained model for 5 epochs. Then, a pre-
trained teacher model and a frozen TA model are used to
train the student model for another 60 epochs. Training is
performed with an NVIDIA Titan XP GPU in an end-to-
end manner. We set the batch size to 2, and the learning rate
is 2e~* with the one-cycle learning rate strategy. The IoU
thresholds for the Car, Pedestrian, and Cyclist categories are
0.7, 0.5, and 0.5, respectively. As for the discrete depth bins
D, we set D to 120, and the minimum and maximum depths
are set to 2.0 and 46.8 meters, respectively.

In the case of the nuScenes dataset, we adopt a pre-
trained CenterPoint [48] as the LiDAR-based teacher and
use BEVDepth [22] for both the TA and the student. Due
to a higher resolution and a larger model size, we set the
batch size to 8 and trained the models with eight NVIDIA
V100 GPUs. We set the learning rate of 2¢~* with a multi-
step learning rate decay schedule and a decay rate of 0.1 and
train the model for 25 epochs.

C. Justification and Analysis of TA

Novelty of the TA. Unlike previous TAKD [26], relying on
step-by-step distillation, we bypass this and simultaneously
distill complementary knowledge to the student: 3D visual
knowledge from the camera-based TA and precise LiDAR-
exclusive 3D features from the LiDAR-based teacher. This
approach presents a novel solution to the cross-modal dis-
tillation problem, which goes beyond addressing the dif-
ferences in the model’s architecture. Experimental results
show that MonoTAKD outperforms TAKD by 4.5%, 3.8%,
and 2.7% in APsp for easy, moderate, and hard scenarios,
as step-by-step distillation cannot bridge the modality gap
and also complicates the training procedure.

Quality and complexity of TA. To ensure high-quality fea-
tures from the TA model, we fine-tune it starting from a pre-
trained camera-based model for 5 epochs, achieving rapid
convergence within 3 hours (simple training procedure) due
to the incorporation of the GT depth, as shown in Table C1.
Additionally, since the TA model is excluded during infer-
ence, it does not affect the student’s inference time.

Table C1. Performance of our teacher model 7 and teaching as-
sistant model A. T represents the incorporation of the GT depth.

Model | Epochs | Training Time (hr) Fasy ?\/Ilf)g)dr.) Hard
T N/A pre-trained 87.68 7632 73.28
A N/A pre-trained 2347 1631 13.84

At N/A pre-trained 54.84 3544 3045
Af 5 3 6291 4335 3499
At 10 6 62.83 4298 34.82

Applicability of TA. One concern is whether depth maps
are always available for training the TA model. Most au-
tonomous driving datasets, including KITTI3D, nuScenes,
and Waymo, provide 3D detection labels derived from Li-
DAR point clouds, which can be readily converted into GT
depth maps for TA training. However, when depth maps
are not directly accessible (e.g., radar 3D object detection),
distance information can be used as an alternative.

In summary, the overall performance, considering AP,
training complexity, and model complexity, provides a su-
perior solution compared to the existing Mono3D approach.
Further discussion can be found in section 5.

D. More Quantitative Results

Results for Pedestrian and Cyclist. We present a detailed
comparison with other state-of-the-art methods for the non-
car categories on the KITTI test set. Table D2 demonstrates
that MonoTAKD outperforms other methods not only in the



Table D2. Experimental results for Pedestrian and Cyclist categories on the KITTI test set. We use bold and underline to indicate the best

and the second-best results, respectively.

Pedestrian AP3p/APBEv Cyclist AP3sp/APggrv

Method Venue Easy Mod. Hard Ealsyy Mod. Hard

MonoATT [51] CVPR 2023 10.55/11.63 6.66/7.40 5.43/6.56 5.74/6.73 3.68/4.44  2.94/3.75
Cube R-CNN [2] CVPR 2023 11.17/11.67 6.95/7.65 5.87/6.60 3.65/5.01 2.67/3.35  2.28/3.32
CaDDN [32] CVPR 2021 12.87/14.72 8.14/9.41 6.76/8.17 7.00/9.67 3.41/5.38  3.30/4.75
DD3D [27] ICCV 2021 13.91/15.90 9.30/10.85 8.05/8.05 2.39/3.20 1.52/1.99 1.31/2.39
MonoNerd [43] ICCV 2023 13.20/15.27 8.26/9.66 7.02/8.28 4.79/15.24 2.48/2.80  2.16/2.55
MonoUNI [17] NeurIPS 2023 15.78/16.54 10.34/10.90 8.74/9.17 7.34/8.25 4.28/5.03  3.78/4.50
OccupancyM3D [30] CVPR 2024 14.68/16.54 9.15/10.65 7.80/9.16 7.37/8.58 3.56/4.35  2.84/3.55
MonoTAKD - 16.15/19.79  10.41/13.62  9.68/11.92 | 13.54/16.90  7.23/9.42  6.86/8.29

Table D3. Experimental results on the KITTI fest set for the Car category, leveraging unlabeled data. We use bold and underline to indicate
the best and the second-best results, respectively.

AP3p APprv
Method Venue Extra Data Easy Mod. Hard Easy Mod. Hard
LPCG [29] ECCV 22 25.56  17.80 1538 | 3596 2481 21.86
Mix-Teaching [46] | CSVT 23 Raw 26.89  18.54 1579 | 35.74 2423  20.80
CMKD [12] ECCV 22 28.55 18.69 16.77 | 3898  25.82  22.80
MonoTAKD - Raw 29.86 21.26 18.27 | 43.83 3231 2848

Car category but also in the Pedestrian and Cyclist cate-
gories. This success indicates that the approach is well-
suited for a broad range of autonomous driving applications,
including tasks like trajectory prediction.

Results on KITTI raw. To improve the transferability and
to generalize the application of MonoTAKD on real-world
scenes, we explore the performance of MonoTAKD in a
semi-supervised manner. As illustrated in Table D3, our
MonoTAKD outperforms CMKD in AP;p/APggy across
all three difficulty levels, respectively.

Owing to MonoTAKD’s outstanding performance in
semi-supervised settings, it is evident that our distillation
method adeptly extracts valuable 3D features from unla-
beled data. Thus, MonoTAKD can provide comprehensive
guidance for the student model across all difficulty levels.

E. More Ablation Studies

Backbone choices on KITTI3D. We analyze the backbone
choice of our MonoTAKD in Table E4. According to the ta-
ble, Swin-T, a transformer-based backbone, exhibits higher
FLOPs and underperforms in both speed and accuracy. We
believe the performance drop is because of the heterogene-
ity of the architecture between teacher and student (CNN
and Transformer). Conversely, MobileNetV3, a lightweight
backbone, excels in speed and efficiency with lower FLOPs
but has a trade-off with lower accuracy.

After comparing ResNet50 and ResNetl01, we deter-
mined that ResNet50 is the optimal backbone for the student
model, delivering enhanced performance with higher AP,
improved FPS, and reduced FLOPs. This finding highlights

that in Mono3D tasks, a larger or more complex backbone
does not necessarily translate to better performance. Note
that, we only compare the FLOPs of the backbone. The
total FLOPs can be found in Table 6.

Table E4. Comparison of MonoTAKD with different backbones.

) . APsp
Backbone Speed (FPS) | FLOPs (G) Fasy Mod. Hard
Swin-T 5.8 16.7 31.57 1933 17.65
MobileNetV3 13.8 34 26.11 1687 13.92
ResNet101 9.2 43 33.07 2154 19.16
ResNet50 119 4.1 3436  22.61 19.88

F. Qualitative Results

We compare our visualization results with state-of-the-art
methods, CMKD [12] and MonoDETR [49], for both 3D
object and BEV detection in Fig. F1. MonoTAKD compar-
atively has the best-fitted bounding box size estimation and
the most accurate 3D localization among the three methods.

Lastly, Fig. F2 presents the BEV features of the teacher,
TA, and the student. Notably, the student’s BEV image ex-
hibits distortion and blurriness. However, with the help of
SAM and FFM modules, the student’s BEV features suc-
cessfully align more closely to resemble the BEV LiDAR
features. This visual comparison illustrates how the pro-
posed approaches collectively contribute to improving the
student’s 3D perception.
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Figure F1. Qualitative results on KITTI val set for the Car category. We compare the qualitative results among CMKD [12], Mon-
oDETR [49], and our proposed MonoTAKD. The first and second rows represent detection results from a camera frontal view and a BEV,
respectively. We use green and red boxes to indicate the ground truth and prediction bounding boxes.
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Figure F2. Visualization of the BEV features from the teacher, TA, and the two distillation branches of the student model on KITTI val set.



