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Supplementary Material

A. More Details of Our Proposed Dataset
To address the limited availability of outdoor, multi-person,
moving-camera datasets with ground-truth annotations in
multi-person motion reconstruction, we constructed our
dataset based on BEDLAM [5]’s synthetic dataset gener-
ation process. We collected 111 unique outfits and their
corresponding textures from BEDLAM, using commercial
software to get realistic deformations. The Figure 8 shows
more scenes of our proposed dataset, and we also attached
many example videos from our dataset, please see in the
attached files.

Motion Selection To focus on motions with significant
translational movement, we selected the SMPL-X [38] mo-
tions from BEDLAM based on the magnitude of variation
in their translation. Formally,

Dtotal =

N∑
i=2

∆Ti =

N∑
i=2

∥Ti −Ti−1∥2,

kP =⌊ P

100
×M⌋,

τP =D(kP ),

(10)

Here, Ti and Ti−1 denote the 3D translation vectors at
the i-th and (i− 1)-th frames, respectively. ∆Ti represents
the frame-to-frame translational difference, computed using
the Euclidean norm ∥ · ∥2. The total translational movement
across a sequence is given by Dtotal, which aggregates ∆Ti

over N frames.
kP is the index corresponding to the top P% of se-

quences, calculated as ⌊ P
100 × M⌋, where M is the total

number of sequences. τP denotes the translational move-
ment threshold for the top P%, derived from the sorted
Dtotal values.

Finally, we selected the top 10% of motion sequences,
ranked by their translational movement Dtotal, as the mo-
tions to include in M3C. These sequences were chosen to
ensure significant translational variability, critical for ad-
dressing the challenges of outdoor, multi-person, moving-
camera scenarios in multi-person motion reconstruction
tasks.

3D Scenes Although HDRI environments provide more
realistic lighting, they cannot perform accurate physical
simulations and impose strict limitations on camera per-
spectives. Therefore, our videos are rendered in photore-
alistic 3D scenes. To ensure that human figures maintain
correct heights on uneven ground, we utilize the ray-casting

in Unreal Engine 5 [1] to detect ground elevation. This al-
lows for a rough correction of the figures’ heights, making
their movements more realistic.

In contrast to existing synthetic datasets, which often
avoid placing objects near human figures to prevent unnatu-
ral physical collisions, we increase the dataset’s complexity
and diversity by incorporating scenes with simple objects
such as grass and lampposts in the placement areas. Al-
though minor collisions may occasionally occur, this design
prioritizes maintaining plausibility in human-scene interac-
tions while enriching the contextual diversity of the envi-
ronments.

Comparison of Camera Trajectories To highlight the
richness of camera dynamics in our dataset, we visualized
camera trajectories in 3D space in M3C and BEDLAM
datasets, as shown in the Figure 5. Notably, the trajecto-
ries with higher Z-values in the BEDLAM visualization are
a result of coordinate origin discrepancies in the 3D scenes;
these trajectories are actually closer to the ground.

From the visualization, it is evident that the M3C dataset
exhibits a greater variety and complexity in camera move-
ments compared to BEDLAM. The trajectories in M3C
cover a more extensive range of spatial regions, showcas-
ing diverse and dynamic camera motions, including non-
linear paths and variable altitudes. By contrast, the BED-
LAM dataset contains trajectories that are more regular and
constrained, with fewer variations in motion patterns.

B. Details of Inference Time Computation
To evaluate the inference time differences across various
scenarios, we adopted a 6fps subset of the BEDLAM
dataset as the test set. This subset comprises 250 videos,
each featuring 3 to 8 individuals. We measured the aver-
age inference time per frame for three different methods,
grouped by the number of people present in each video. All
methods were evaluated on a single NVIDIA 3090 Ti GPU.

As illustrated in Figure 7, the top-down methods, repre-
sented by SMPLer-X [7], show a linear increase in inference
time with the number of individuals. Compared with top-
down methods detecting and processing each person sepa-
rately, bottom-up methods, represented by Multi-HMR [3],
process the entire image holistically, maintaining stable in-
ference time regardless of the number of individuals. Our
proposed method further enhances efficiency by processing
the video sequence as input, achieving significantly reduced
per-frame inference time compared to frame-by-frame ap-
proaches.



Figure 5. Visualization of camera trajectories in M3C and BEDLAM. Each trajectory is represented using a consistent color within the
same subset of each dataset. The axes (X , Y , Z) denote distances from the origin of the 3D scene’s human placement region.
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Figure 6. More qualitative comparison results on BEDLAM dataset. Our method performs better in occlusion scenarios.

Figure 7. The average inference time per frame of different meth-
ods on videos containing varying numbers of people.

C. More Qualitative Comparisons on the BED-
LAM Dataset

We also visualize the results on the BEDLAM dataset. As
shown in Figure 6. The advantages of our method can be
more clearly seen: the baseline methods are struggling with
temporary disappearance of individuals and tend to recog-
nize the same individual with different identities while ours
can infer the correct identity information by temporal in-
formation. Please see more comparisons in video in the at-
tached files.

D. More Evaluations

We added combinations of different trackers, detectors, and
pose estimators to carry out experiments, as shown in the
Tab. 7. The results of TRACE [47] and the body-only 3D



Figure 8. More scenes of our proposed dataset are presented. Our dataset is mainly composed of outdoor scenes with multiple individuals
moving in the scene.

IDs ↓ MOTA ↑ PA-MPJPE ↓ MPJPE ↓

YOLOX-X + SMPLer-X + BoostTrack++ 375 90.86 49.79 87.37
Multi-HMR + BoostTrack++ 466 82.66 46.45 91.15

PHALP (w/ 4D-Human) 175 84.25 77.59 156.41
TRACE 516 70.26 76.36 129.98

Ours 128 95.15 45.56 79.88

Table 7. More evaluation on BEDLAM.

human tracker PHALP [39] are also presented.
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