Table Al. Training recipe. Building upon VILA, we introduce
two additional stages for NVILA: Stage 2, which focuses on pre-
training the visual encoder to reduce performance loss due to spatial
token compression, and Stage 5, which focuses on video instruction
tuning to improve the model’s long video capability.

Visual Encoder Projector Token Processor

(ViT) (MLP) (LLM) LR
Initial from [14] random from [15] -
Stage 1 trainable 1x10°
Stage2  trainable trainable 5%x10°
Stage 3 trainable trainable 5%x107
Stage 4  trainable trainable trainable 2x107
Stage 5 trainable trainable trainable 2x107°
A.1. Related Work

A.1.1. Visual Language Models

VLMs, especially proprietary ones, have advanced
rapidly over the past two years. For example, OpenAl has
upgraded from GPT-4V [64] to GPT-40 [12], achieving a
5-10% performance gain across image and video QA bench-
marks. Google has extended the context length to 1M in
Gemini Pro 1.5 [65], a significant improvement over Gemini
1.0 [66]. It now ranks at the top of the Video-MME leader-
board [59] for long video understanding. Anthropic has
released Claude 3.5 [13], which demonstrates better bench-
mark scores than GPT-40, showcasing notable improvements
over Claude 3 [67]. Other proprietary models have simi-
lar advancements, such as Apple’s upgrade from MMI1 to
MM1.5 [68] and xATI’s upgrade from Grok-1.5 [52] to Grok-
2 [69].

Meanwhile, open-source VLMs continue to evolve, im-
proving at both the system/framework level [70] and the
algorithm/recipe level [2], progressively narrowing the per-
formance gap between proprietary and open-source mod-
els [5,19,71-73]. These recent advancements have led many
open VLM models to claim performance levels compara-
ble to, or even exceeding, leading proprietary models such
as GPT-4V and GPT-40. Some representative examples in-
clude InternVL2 [3], Qwen2-VL [5], LLaVA-OneVision [4],
Llama 3.2 Vision [74], Molmo [75], NVLM [73], and
MiniCPM-V [18].

Despite significant advancements in model performance,
much less focus has been placed on enhancing the efficiency
of training, inference, and fine-tuning for these models. This
paper aims to explore how to develop VLMs that are not only
highly accurate but also optimized for end-to-end efficiency.

A.1.2. Efficiency

Prior works such as [61,76-82] have explored token re-
duction techniques in both spatial and temporal dimensions.

Table A2. Temporal localization. LITA results are from their orig-
inal paper, while VILA-1.5 results are based on our reproduction.
Our NVILA uses the same data mixture as VILA-1.5; the only
difference is the backbone VLM.

ActivityNet-RTL

#Frames  Mean IoU  Precision@0.5
LITA 7B 100 24.1 21.1
LITA 13B 100 28.6 25.9
VILA-1.5 8B 256 32.1 29.3
NVILA 8B 256 34.8 32.1

However, none have focused on reducing the number of
tokens for a frontier Vision-Language Model (VLM). For
dataset pruning, promising approaches have been proposed
for selecting pretraining data for Large Language Models
(LLMs), such as domain-mixing [83], sample-wise data se-
lection [27,84], and theory-driven optimal selection [28]. In
this work, we specifically focus on pruning supervised fine-
tuning (SFT) datasets for VLMs. Regarding low-precision
training, FP8 training [85, 86] has gained popularity for
LLMs, yet no prior work has demonstrated its feasibility
for VLMs without sacrificing accuracy. Techniques such as
pruning, distillation, and quantization are commonly applied
to LLMs. [87,88] apply pruning/distillation to LLM. How-
ever, their application to VLMs presents an open question:
Should an LLM be pruned or distilled first before integrating
a vision encoder, or should the VLM itself be pruned or dis-
tilled after training? Similarly, quantization techniques like
AWQ [40] and GPTQ [89] are well-documented for LLMs,
and VILA [2] has shown that AWQ can be directly applied
to VLMs. However, little attention has been given to quantiz-
ing vision encoders, which becomes critical when handling
higher-resolution images or videos due to the increased com-
putational demands. Parameter-efficient fine-tuning meth-
ods such as LoRA [90], DoRA [91], QLoRA [92], and Ga-
LoRA [93] are widely used for LLMs to reduce memory
requirements. However, for VLMs, which combine a vi-
sion encoder with an LLM, efficient fine-tuning techniques
are still underexplored. Addressing this gap is crucial for
advancing VLM fine-tuning with limited computational re-
sources.

A.2. More Capabilities
A.2.1. Temporal Localization

Following LITA, we also add support for temporal local-
ization in NVILA. We add discrete time tokens to indicate
the timestamps in the video, and use the smoothed cross
entropy loss to train the model. From the results in Table A2,
we can clearly see that NVILA substantially outperforms all
baselines for all metrics.



Question: <image>What is the weather in
this photo like?

Answer the question using a single word or
phrase.

Answer: Snowy

DeltaLoss: 0.0343 (too easy )()

Question: <image>\nWhat color is the canopy?
A. white/yellow B. green/white
C. blue/white D. red/white
Answer with the option's letter from the given
choices directly.
Answer: D

Question: <image> Which action
depicted is a sign of respect?

Answer the question using a single
word or phrase.

Answer: Hat over heart

DeltalLoss: 4.1605 (helpful )

DeltaLoss: -1.916 (wrong answer )()

Figure Al. Dataset pruning. Deltal.oss visualizations in NVILA training: Left, Middle, and Right sections show examples that are too easy,
distracting, and helpful for training, respectively.

1 B Oracle Path

B | B Prediction
Instruction: Exit the living room and turn right into the kitchen. Turn left at the
end of the counter and wait in the room across the hallway slightly to the left.
Agent: The next action is turn left 15 degrees.

N

Instruction: Walk forward out of the room. Turn right and enter the other room
and stop in front of the table.
Agent: The next action is move forward 75 cm.

Figure A2. Robotic navigation. NVILA deployed as a Vision-
Language Navigation agent, navigating environments using lan-
guage instructions and visual observations (Top: simulation, Bot-
tom: real-world). The real-world setup features a Unitree Go2
robot equipped with a LiDAR sensor at the base of its head and an
Intel RealSense Camera mounted on top. On the server side, an
RTX 4090 GPU powers the NVILA-8B model, configured with an
8-frame context length for action generation.

A.2.2. Robotic Navigation

NVILA can serve as a strong foundation for robotic
agents in Vision-Language Navigation [94] and empower
real-time deployment on resource-constrained edge devices.
At each time step ¢, the agent receives a language instruc-

Table A3. Robotic navigation. All numbers are from NaVILA,
except for those of NVILA. All models are provided with only
RGB inputs. We refer the readers to NaVILA [8] for more details.

R2R Val-Unseen
Obs. NEJ OST SRt SPL?T

Seq2Seq - RGB 10.10 8.0 0.0 0.0
CMA - RGB 955 10.0 5.0 4.0
NaVid 7B RGB 547 490 370 35.0
NVILA 8B RGB 543 604 533 48.8

tion and a video observation, plans the next action, and
transitions to the next state ¢ + 1, where it receives a new
observation. NVILA’s efficient and flexible handling of
multi-frame inputs enables seamless integration of historical
and current observations into VLMs. The NaVILA frame-
work [8] introduces a tailored navigation prompt and fine-
tunes NVILA using navigation-specific SFT data curated
from the simulator [95]. Quantitative results in Table A3
show that NVILA’s straightforward design achieves state-
of-the-art results on VLN-CE. Visual results of real-time
deployment of the navigation model based on NVILA-8B
on a single laptop GPU for navigation tasks are presented
in Fig. A2. The entire system can operate seamlessly with
an end-to-end (camera—GPU—action) pipeline running at
1Hz.

A.2.3. Medical Application

NVILA also offers transformative potential in the med-
ical domain. Such integration promises advancements in
diagnostic accuracy, clinical decision-making, and data in-
terpretation. The NVILA-M3 framework [11] introduces a



Table A4. Medical application. Performance of best M3 model
on key benchmarks is shown. Task-specific SOTA baselines and
datasets are described in the experiments section [11]. Metrics for
VQA is accuracy, for report generation BLEU-4 & ROUGE and
for classification F1 score have been utilized

VQA Report Gen.  Classif.

Rad Path CXR CheXpert

Med-Gemini - 78.8 833 20.5 283 48.3
VILA-M3 8B 847 910 21.1 320 61.6
NVILA 8B 855 929 228 328 61.1

Task-spfc. SOTA  84.2 91.7 154 30.6 51.5

novel approach by integrating multiple domain-expert mod-
els tailored to specific medical tasks, such as image segmen-
tation and classification. These expert models are designed
to extract and interpret intricate features that are otherwise
difficult for general VLM’s to discern. By coupling these spe-
cialized models with a vision-language learning paradigm,
NVILA-M3 achieves enhanced performance, facilitating the
learning of nuanced relationships between visual inputs and
their textual annotations. This integration not only improves
task-specific outcomes but also sets a foundation for the
development of more robust and context-aware VLMs in
the healthcare domain. NVILA-M3 indicated that an overall
improvement of 9% can be achieved via usage of expert mod-
els over existing SOTA, a few key results can be observed
in Table. A4. This underscores the importance of leverag-
ing domain expertise to bridge the gap between generalized
Al capabilities and the demands of specialized applications,
demonstrating the potential for VLMs to revolutionize fields
where precision and specificity are paramount.



