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I Overview

In this document, we supplement the details left out from the
main text. We first explain additional training details about
our method in Section II. We then present more experimental
results in Section III. In order to show that our method can
be adapted to multi-view setting, we present results on multi-
view data in Section IV.

II Training Details

We describe the training process of our model, including
the preprocessing of the data, and the network architecture
details.

II.1 Preprocessing of the Data

We begin by masking each object in the image, cropping it
so the object is centered, and resizing it to a resolution of
192× 192.
Scale matrix S. The scale matrix S is obtained from the
reference image A. The computation of the scale matrix S
is detailed here. Let dAD represent the depth values in AD,

and
[
u
v

]AD

denote the corresponding pixel positions of the

object, pre-filtered using the mask AM . The corresponding
3D point in the camera coordinate space for each pixel in

the image A is given as

xy
z

 ∈ R3. Using this, we construct

a point cloudPA ∈ RN×3 where N is the number of points,
computed as N =

∑
u

∑
v QM (u, v) = 1.

To normalize the points into ROC space, we apply the
scale matrix S, as defined in Equation 1. For each instance
in the reference image, we establish a Reference Object
Coordinate (ROC).
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YA = (YA − c)/(w × 1.1) (3)

By determining the size scalar w and the center c of the
point cloud PA, we translate PA to the origin with the offset
c and scale it with w × 1.1 to ensure all points lie within
[−0.5, 0.5]. The result is the normalized 3D point cloud PA

in ROC space, which is then mapped into an RGB image
YA, referred to as the ROC map, where the RGB channels
encode the 3D ROC positions.

In this process, the scale and shift transformation matrix
S is also computed and recorded for further alignment on
the predicted ROC map from the test image.

s = 1/(w × 1.1) (4)
t = −1× c/s (5)

S =

s 0 0 tx
0 s 0 ty
0 0 s tz
0 0 0 1

 (6)

II.2 Network Architecture
Diffusion Model [20]. The text-to-image diffusion model
is a generative framework designed to create high-quality
images from textual descriptions. Its architecture consists of
three key modules: an encoder and a decoder, based on VQ-
VAE [5], which map features between the image and latent
spaces, and a U-Net module that performs denoising within
the latent space. The diffusion proves its strong capability in
image generation, and it can also cooperate with other gen-
eration tasks like depth generation [17]. Here, we extend the
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diffusion model to predict ROC maps. To improve time effi-
ciency, we employ a feedforward stable diffusion model in-
stead of the traditional iterative denoising process.

Following [2], we utilize the stable diffusion model [20],
pre-trained on Laion-5b [21]. We freeze the VQVAE module
to encode the input query image QI , mapping it to the latent
space as the feature map FQ. The U-Net is fine-tuned using
our data pairs. Reference RGBD images serve as conditional
inputs, processed through the Reference Object Encoder
(ROE) and passed into the U-Net as feature maps FA. The
two feature embeddings FQ and FA , are integrated via the
cross-attention modules in U-Net, producing the semantic
and spatially aligned feature map FQ2A. Since ROC maps
differ significantly from typical RGB images, we train the
decoder from scratch. The decoder progressively refines
FQ2A to reconstruct a high-resolution output aligned with
the original image dimensions. The individual modules are
detailed below.

VQVAE. We adopt the pre-trained VQVAE module from
[20] and freeze it during training. Input images are normal-
ized for better feature extraction.

U-Net. The U-Net is initialized with pre-trained weights
from [20]. During the feedforward pass, no noise is added,
allowing the U-Net to directly output meaningful feature
embeddings. The ROE features serve as conditional inputs
to the U-Net, interacting with the latent feature FQ through
cross-attention layers. The U-Net gradually learns to process
the feature maps from ROPE and the test image.

ROE. The Reference Object Encoder (ROE), denoted as
f(A; θA) extracts latent encodings from a channel-wise con-
catenation of the reference RGB image, ROC map, and ob-
ject mask. This encoding captures both texture and geomet-
ric information. The ROE processes these inputs through
three convolutional layers with batch normalization and
ReLU activation. A residual connection block [9] further re-
fines the features embeddings. The resulting feature maps
are tokenized into patches with positional embeddings [1],
effectively guiding ROC map generation and maintaining fi-
delity to reference data, even under occlusion.

Decoder. The decoder consists of five convolutional layers
with residual connections [9]. Each layer includes a bilinear
upsampling module to produce the final ROC map ŶQ. The
decoder is initialized using Kaiming Initialization [8].

III Experimental Results

In this section, we provide a detailed analysis of the exper-
imental results and investigate the impact of training data
scale on the performance of our model.

III.1 Full Test Results on the YCB-Video
Dataset

We present the detailed test results on the YCB-Video [29]
test set in Table A, including performance metrics for each
object. For all one-view methods, only the first test image is
used as the reference image. In contrast, multi-view-based
methods such as FS6D [11], Predator [15], and LoFTR [23]
are fine-tuned on the test set, following the protocol outlined
in FS6D [11]. Specifically, FS6D divides the test objects
into three groups, training on two groups while testing on the
remaining one. Our method demonstrates superior perfor-
mance compared to other one-view-based approaches, par-
ticularly for the ADD metric, where it significantly outper-
forms all competing methods. Our method even surpasses
some multi-view approaches that employ fine-tuning on the
test data.

III.2 Full Tracking Results on YCB-Video Se-
quences

We present the object tracking results on the full YCB-Video
Sequences [29] , using the first frame as the reference, in
Table B. We compare our approach with other CAD model-
based novel object pose tracking methods, including [28],
RGF [16], ICG [22], and FoundationPose [27]. Our method
achieves the best performance among one-view-based track-
ing methods and performs comparably to CAD model-based
approaches.

III.3 Robustness Analysis on the Selection of
Reference Images

To further demonstrate the robustness of One2Any on the
selection of different reference images, we additionally
measure the standard deviation of the method when deal-
ing with different reference images. We conducted exper-
iments following Oryon [3], evaluating 2000 randomly se-
lected reference-query image pairs from the Real275 [26]
and Toyota-Light [14] datasets respectively. These datasets
contain various combinations of the same objects with differ-
ent reference-query pairs. As shown in Table 1 (main paper),
our method significantly outperforms existing approaches
when handling different reference images. To further ana-
lyze robustness, we computed the standard deviation (std)
for each object and averaged them (see in Table C). Our
method achieves a lower std, demonstrating its robustness to
variations in reference images.

III.4 Performance on Occluded Scenes
For scenes with occlusions—whether in the reference image
or the test image—our method demonstrates strong robust-
ness in handling occluded scenarios, where other methods
often fail. Detailed results are presented in Figure A.



Table A. Performance on occluded YCB-Video [29] dataset. We compare with point cloud registration methods, multi-view methods, and
one-view methods. Predator [15], LoFTR [23] and FS6D [11] are fine-tuned on the YCB-Video dataset. We evaluate ADD-S AUC and
ADD AUC metrics. Results of multi-view methods are adopted from [27]. For one-view methods, we provide the first image in the test set
as the reference. The best performance among multi-view methods and one-view methods are highlighted in bold.

Methods PREDATOR [15] LoFTR[23] FS6D [11] FoundationPose [27] FoundationPose[27] Oryon [3] NOPE [18] One2Any(Ours)
Ref. Images 16 16 16 16 - CAD 1 - CAD 1 1 + GT trans 1

metrics ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD

002 master chef can 73.0 17.4 87.2 50.6 92.6 36.8 96.9 91.3 87.3 73.3 12.2 8.7 96.8 17.8 94.9 84.3
003 cracker box 41.7 8.3 71.8 25.5 83.9 24.5 97.5 96.2 92.0 72.2 6.5 3.3 83.0 2.8 91.1 83.3
004 sugar box 53.7 15.3 63.9 13.4 95.1 43.9 97.5 87.2 88.2 87.1 5.3 3.8 86.5 22.3 95.3 88.0

005 tomato soup can 81.2 44.4 77.1 52.9 93.0 54.2 97.6 93.3 95.2 92.3 10.9 5.9 95.9 48.4 93.6 80.9
006 mustard bottle 35.5 5.0 84.5 59.0 97.0 71.1 98.4 97.3 88.4 76.6 5.5 4.7 91.3 42.7 93.8 87.6
007 tuna fish can 78.2 34.2 72.6 55.7 94.5 53.9 97.7 73.7 90.5 76.9 23.2 15.6 97.0 33.3 95.9 90.0
008 pudding box 73.5 24.2 86.5 68.1 94.9 79.6 98.5 97.0 91.7 77.8 1.3 1.3 84.4 20.9 96.1 93.3
009 gelatin box 81.4 37.5 71.6 45.2 98.3 32.1 98.5 97.3 92.7 87.7 1.3 1.3 87.3 35.3 97.7 96.1

010 potted meat can 62.0 20.9 67.4 45.1 87.6 54.9 96.6 82.3 90.3 83.5 38.9 19.2 92.8 31.9 86.3 72.5
011 banana 57.7 9.9 24.2 1.6 94.0 69.1 98.1 95.4 90.3 76.3 4.9 4.1 61.3 11.4 95.0 85.7

019 pitcher base 83.7 18.1 58.7 22.3 91.1 40.4 97.9 96.6 92.1 86.9 41.2 14.9 88.9 6.1 93.6 87.7
021 bleach cleanser 88.3 48.1 36.9 16.7 89.4 44.1 97.4 93.3 90.8 85.5 5.0 2.8 89.6 32.3 93.0 84.6

024 bowl 73.2 17.4 32.7 1.4 74.7 0.9 94.9 89.7 87.5 43.6 3.8 3.6 93.2 6.7 92.1 65.1
025 mug 84.8 29.5 47.3 23.6 86.5 39.2 96.2 75.8 91.0 74.1 2.6 2.6 92.5 31.6 95.5 82.9

035 power drill 60.6 12.3 18.8 1.3 73.0 19.8 98.0 96.3 97.0 96.8 22.1 13.1 56.0 0.0 92.4 84.6
036 wood block 70.5 10.0 49.9 1.4 94.7 27.9 97.4 94.7 67.1 19.9 26.3 10.5 77.1 0.0 92.7 85.0

037 scissors 75.5 25.0 32.3 14.6 74.2 27.7 97.8 95.5 97.4 94.7 9.5 5.8 75.5 0.0 92.6 84.7
040 large marker 81.8 38.9 20.7 8.4 97.4 74.2 98.6 96.5 92.7 90.4 9.1 8.0 79.6 39.3 96.5 91.0
051 large clamp 83.0 34.4 24.1 11.2 82.7 34.7 96.9 92.7 87.4 68.9 22.4 8.2 100.0 100.0 92.9 84.2

052 extra large clamp 72.9 24.1 15.0 1.8 65.7 10.1 97.6 94.1 90.5 43.7 16.9 8.1 82.6 0.0 89.5 65.8
061 foam brick 79.2 35.5 59.4 31.4 95.7 45.8 98.1 93.4 98.7 90.9 11.3 9.1 95.2 43.5 97.6 95.9

mean 71.0 24.3 52.5 26.2 88.4 42.1 97.4 91.5 90.4 76.1 13.3 7.4 86.0 25.1 93.7 84.4

Table B. Performance on pose tracking task. We compared with CAD model based tracking methods on YCB-V full video sequences. For
our method, we still only give the first frame as a reference, and we keep the reference during tracking.

Method Wuthrich[28] RGF[16] ICG[22] FoundationPose[27] FoundationPose[27] One2Any(Ours)
Method CAD CAD CAD 16 frames-CAD 1st frame-CAD 1st frame

metrics ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

002 master chef can 55.6 90.7 46.2 90.2 66.4 89.7 91.2 96.9 38.1 83.3 83.8 94.8
003 cracker box 96.4 97.2 57.0 72.3 82.4 92.1 96.2 97.5 78.3 94.0 83.0 91.3
004 sugar box 97.1 97.9 50.4 72.7 96.1 98.4 94.5 97.4 40.0 78.7 88.7 95.3

005 tomato soup can 64.7 89.5 72.4 91.6 73.2 97.3 94.3 97.9 14.0 49.3 87.1 95.5
006 mustard bottle 97.1 98.0 87.7 98.2 96.2 98.4 97.3 98.5 24.8 58.8 87.7 93.8
007 tuna fish can 69.1 93.3 28.7 52.9 73.2 95.8 84.0 97.8 75.3 97.4 89.5 95.9
008 pudding box 96.8 97.9 12.7 18.0 73.8 88.9 96.9 98.5 96.9 98.3 93.5 96.3
009 gelatin box 97.5 98.4 49.1 70.7 97.2 98.8 97.6 98.5 97.2 98.6 96.1 97.7

010 potted meat can 83.7 86.7 44.1 45.6 93.3 97.3 94.8 97.5 5.5 52.6 65.9 84.0
011 banana 86.3 96.1 93.3 97.7 95.6 98.4 95.6 98.1 64.7 84.7 83.6 95.1

019 pitcher base 97.3 97.7 97.9 98.2 97.0 98.8 96.8 98.0 94.6 96.4 87.0 93.4
021 bleach cleanser 95.2 97.2 95.9 97.3 92.6 97.5 94.7 97.5 16.6 58.6 84.8 93.2

024 bowl 30.4 97.2 24.2 82.4 74.4 98.4 90.5 95.3 12.4 40.2 71.8 91.8
025 mug 83.2 93.3 60.0 71.2 95.6 98.5 91.5 96.1 54.4 91.3 83.3 95.5

035 power drill 97.1 97.8 97.9 98.3 96.7 98.5 96.3 97.9 50.4 69.2 85.5 92.8
036 wood block 95.5 96.9 45.7 62.5 93.5 97.2 92.9 97.0 88.4 95.9 85.5 92.8

037 scissors 4.2 16.2 20.9 38.6 93.5 97.3 95.5 97.8 96.0 97.9 81.0 91.7
040 large marker 35.6 53.0 12.2 18.9 88.5 97.8 96.6 98.6 74.0 90.3 90.3 96.2
051 large clamp 61.2 72.3 62.8 80.1 91.8 96.9 92.5 96.7 60.1 81.0 84.5 93.2

052 extra large clamp 93.7 96.6 67.5 69.7 85.9 94.3 93.4 97.3 44.4 85.1 71.1 91.0
061 foam brick 96.8 98.1 70.0 86.5 96.2 98.5 96.8 98.3 89.8 98.2 96.1 97.7

mean 78.0 90.2 59.2 74.3 86.4 96.5 93.7 97.5 57.9 80.9 84.8 93.8



Table C. Robustness Analysis. We measure the standard deviation
(std) of AR score and ADD-AUC metrics.

Methods Real275 [26] Toyota-Light [14]
AR ADD-AUC AR ADD-AUC

Oryon [3] std 25.7 46.9 25.6 42.3

One2Any std 15.6 27.2 22.5 30.5

We observe that occlusions lead to incorrect correspon-
dences in Oryon [3], causing significant translation errors.
This results in a projected pose that is far from the ground
truth, as illustrated in row 1, where the predicted pose is pro-
jected entirely out of the image. Similarly, NOPE [18] strug-
gles with occlusions in the reference image. In such cases,
suboptimal feature extraction leads to incorrect relative pose
predictions in the latent space, as seen in rows 1–3. How-
ever, when the reference image provides clear, representa-
tive texture input (row 4), NOPE can handle pose estima-
tion effectively, even if the test image is occluded. Foun-
dationPose [27], on the other hand, heavily depends on the
quality of its generated model. Figure A shows two views
of the generated model: the upper view resembles the refer-
ence image, while the lower view corresponds to the test im-
age. When the test view aligns well with the generated CAD
model, FoundationPose performs reliably. However, when
the test view deviates significantly from the generated model,
as seen in rows 2 and 4, it fails to predict the correct pose.

In contrast, our method is highly robust to occlusions in
both the reference and test images, consistently achieving
accurate pose estimation even under challenging conditions.

III.5 Performance on Large View Variations

We show qualitative results for scenes with significant view
variations in Figure B. These scenarios involve objects with
markedly different perspectives in the reference and test im-
ages. Even in the absence of occlusion, low overlap between
the object views presents a significant challenge for pose es-
timation when only a single reference view is provided.

Methods based on correspondences often fail in such
cases due to the difficulty of establishing accurate matches.
Similarly, the latent space searching approach used by NOPE
[18] performs poorly when it is unable to conduct a compre-
hensive search in the latent space. For model-based methods,
the effectiveness of the generated model can degrade under
such conditions. As shown in the last two rows, only partial
regions of the object are generated from the reference image,
resulting in poor supervision for pose estimation when the
test view has minimal overlap with the reference.

In contrast, One2Any performs robustly even with large
view variations. This stability is attributed to the model’s
ability to predict ROC maps, effectively inferring missing
parts of the object given the Reference Object Embedding
(ROPE) and ensuring accurate pose predictions.

Ref. Image FoundationPose Oryon NOPE One2Any(Ours)

Figure A. Qualitative results on occluded scenes. We present re-
sults for scenarios where occlusion occurs in the reference image
and the test image, respectively. The test image displays projected
poses with axes, where the green color represents the predicted
pose, and the pink color indicates the ground-truth pose. For Foun-
dationPose [27], we also include the generated model derived from
the reference image. The upper model view corresponds to the ref-
erence image, while the lower model view aligns with the test im-
age. For Oryon [3], we visualize its predicted correspondences. For
One2Any (Ours), we additionally compare the generated ROC map
(below) with the ground-truth ROC map (above).

III.6 Performance on Textureless Objects
We further present additional results for textureless objects
in Figure C. Textureless objects are known to introduce sig-
nificant challenges for correspondence matching and tem-
plate matching methods. As a result, these approaches of-
ten fail to predict accurate poses for textureless objects. For
example, Oryon [3] struggles with large translation errors,
leading to projections that fall outside the image frame.

In contrast, our method, which predicts poses through
ROC map generation, demonstrates stability and robustness
in handling textureless objects, maintaining accurate pose
predictions even under these challenging conditions.

III.7 More Qualitative Results on Novel Ob-
jects

We present additional qualitative results of our method across
various test datasets, including YCB-Video [29], Toyota-
Light [14], T-LESS [13], IC-BIN [4], and TUD-L [14].
These datasets are popular in the BOP benchmark. The re-
sults are illustrated in Figure D, where we also display the
predicted ROC map alongside the reference ROC map.

Our method demonstrates the ability to predict poses for
a diverse range of unseen objects across different datasets,
such as an unusual toy dinosaur and a charger. Additionally,
our method is robust to challenging conditions like signif-
icant lighting changes. For instances with large view vari-



Ref. Image FoundationPose Oryon NOPE One2Any(Ours)

Figure B. Qualitative results on large view variations. We present
results for scenarios with significant view variations, including
cases with low or almost no overlap between the reference and test
images. In the test images, we display the projected poses with axes,
where the green color represents the predicted pose and the pink
color indicates the ground-truth pose. For FoundationPose [27], we
also include the generated model derived from the reference image.
The upper view corresponds to the reference image, while the lower
view aligns with the test image. For Oryon [3], we visualize its
predicted correspondences. For One2Any (Ours), we additionally
show the generated ROC map (below) alongside the ground-truth
ROC map (above).

Ref. Image FoundationPose Oryon NOPE One2Any(Ours)

Figure C. Qualitative results on textureless objects. We evaluate
the pose estimation performance for textureless objects, which is
presented in Figure C. The test images display projected poses with
axes, where the green color represents the predicted pose and the
pink color indicates the ground-truth pose. For FoundationPose
[27], we include the generated model derived from the reference
image. The upper view corresponds to the reference image, while
the lower view aligns with the test image. For Oryon [3], we
visualize its predicted correspondences. For One2Any (Ours), we
additionally compare the generated ROC map (below) with the
ground-truth ROC map (above).

ations and minimal overlap, such as the cup example, our
method accurately estimates the pose.

0.09s/ per frameFirst view

Ref. Image Pred. Pose

Ref. ROC Pred. ROC
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Ref. ROC Pred. ROC Ref. ROC Pred. ROC
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Figure D. More qualitative results. We present pose estimation
results across additional test datasets, including YCB-Video [29],
Toyota-Light [14], T-LESS [13], IC-BIN [4], and TUD-L [14]. For
each dataset, we display the ROC maps for the reference images
and the predicted ROC maps for the test images. Furthermore, we
demonstrate the tracking performance on the YCB-Video dataset.
The predicted pose is shown in green, while the ground-truth pose
is shown in pink. Additionally, we present the projections of the
object point cloud on the image, corresponding to both the ground-
truth pose and the predicted pose.

We also showcase pose tracking performance with the
driller object, where our method successfully follows the
object’s motion and achieves accurate pose tracking using
only the first view as a reference. The processing time is
approximately 0.09 seconds per frame with a single Nvidia
RTX 4090 GPU.

III.8 Experiments with RGB-only Inputs
To further explore the ability of One2Any when dealing
with RGB query images only (without depth inputs), we use
RANSAC+PnP [7] for pose estimation and tested on YCB-
Video [29]. Results are shown in Table D, we measure the
average rotation error and translation error for detailed com-
parison. RGB-only input achieves competitive rotation esti-
mation, even outperforming Umeyama [25]. However, esti-
mating translation from a single view without depth is inher-
ently challenging, as depth provides critical scale informa-
tion. For instance, NOPE [18], a single view method which
uses RGB-only input, does not estimate translation at all.

III.9 Training Data Scalability
We evaluate the impact of training data size on our
method. Due to the simplicity of our data collection pro-



Table D. Performance of PnP method [7] (without depth input)
compared with Umeyama algorithm [25] (with depth input). We
test on YCB-V test set and measure the rotation error and translation
error in detail.

Method rotation err (°) translation err (m)

Umeyama [25] 22.2 0.02
RANSAC+PnP [7] 21.0 0.04

Figure E. Training data scalability. We analyze the effect of train-
ing data size on our method’s performance and compare it with
FoundationPose [27].

cess—requiring only image pairs of the same object—we
can generate an unlimited amount of synthetic data for train-
ing. To analyze the effect of training data scale, we gradually
increase the size of the training dataset and evaluate perfor-
mance on the consistently used test set YCB-Video [29] test
set as the evaluation benchmark. The metrics used are ADD-
AUC and ADD-S AUC, with results presented in Figure E.

For comparison, we include performance from Founda-
tionPose [27]. Our observations show that the performance
of our method improves steadily with an increasing amount
of training data. Notably, when the training data size in-
creases to 1M, FoundationPose shows little to no improve-
ment, whereas our method continues to demonstrate signif-
icant gains. This indicates that the performance of our ap-
proach can be further enhanced with even larger datasets.
Due to computational resource limitations, we capped the
training data size at approximately 2M samples.

IV Extension to Multi-view Setups

We further extend our method to multi-view setups. Owing
to its time efficiency, our method can seamlessly handle
multi-view configurations by estimating the relative pose
between the test image and each reference image in the multi-
view set. The best prediction is then selected based on these
estimations.

IV.1 Simple Voting Strategy for Pose Selection
Assume we have N multi-view reference images, resulting
in N predicted poses [R|t]i∈N . We employ a simple voting
strategy to identify the optimal prediction among these poses.

When utilizing multi-view reference images, we assume
low overlap between the images. Consequently, for each
test image, there exists an optimal prediction corresponding
to one of the reference views. The objective is to use a
voting strategy based on reprojection error to identify this
best match.

First, we filter out incorrect predictions using reprojection
error. Given a predicted relative pose between the test im-
age and reference image AIi , we estimate the relative pose
[R̂|t̂]i2r, With the ground-truth pose of the reference view
[R|t]i. The predicted pose of the current test image is:

[R̂|t̂]i = [R̂|t̂]i2r[R|t]i (7)

Next, we compute the reprojection error from the test
image to all reference images. Using the predicted pose,
we obtain. We first get the point cloud WQ in the world
coordinate with the predicted pose.

WQ = [R̂|t̂]i
−1

K−1QD[QM = 1] (8)

K ∈ R4×4 is the camera intrinsic matrix, QD, QM are the
depth image and the mask image respectively. Thus, for each
reference image Aj , j ∈ N , we have

PAj = K[R|t]jWQ (9)

Then we get the projected pixels in the image frame[
U
V

]
=

PAj
[:, : 2]

PAj [:, 2]
(10)

And we get the projected mask as:

ÂMj
[U V ] = 1 (11)

To evaluate the prediction, we compute the mIoU [6] be-
tween the predicted mask ÂMj

and the ground-truth mask
AMj

. Typically, for each test image, there exists at least one
reference image where the reprojection results in a high over-
lap with the ground-truth mask, yielding a high mIoU. How-
ever, for other reference images, the predicted mask may re-
sult in a lower IoU. Consequently, we select the predicted
pose corresponding to the maximum IoU across all reference
images as the final predicted pose.

IV.2 Experiments with Multi-view Setups
We conduct experiments on the challenging LINEMOD
dataset [12], which features significant view variation. Re-
sults are presented in Table E. In addition, we evaluated the



Table E. Performance on LINEMOD [12] dataset with multi-view setups. We report the recall of ADD-0.1d metric. Results of multi-view
methods are taken from FS6D [27]. The best performance among multi-view methods are highlighted in bold. One2Any(Ours) 8-view, 16-
view methods are evaluated with a pose selection strategy, while 8-best view and 16-best view results are approached with the best prediction.

Methods Modality Ref. Images ape benchwise cam can cat driller duck eggbox glue holepuncher iron lamp phone mean

OnePose [24] RGB 200 11.8 92.6 88.1 77.2 47.9 74.5 34.2 71.3 37.5 54.9 89.2 87.6 60.6 63.6
OnePose++ [10] RGB 200 31.2 97.3 88.0 89.8 70.4 92.5 42.3 99.7 48.0 69.7 97.4 97.8 76.0 76.9
LatentFusion [19] RGBD 16 88.0 92.4 74.4 88.8 94.5 91.7 68.1 96.3 49.4 82.1 74.6 94.7 91.5 83.6
FS6D [11] + ICP RGBD 16 78.0 88.5 91.0 89.5 97.5 92.0 75.5 99.5 99.5 96.0 87.5 97.0 97.5 91.5

One2Any (Ours) RGBD 8 79.9 75.1 88.5 60.6 90.1 70.5 45.8 100.0 99.9 84.4 60.7 84.0 89.9 79.2
One2Any (Ours) RGBD 16 82.1 85.5 92.8 75.9 94.1 80.4 65.9 100.0 99.9 70.7 61.7 91.5 84.1 83.7

One2Any (Ours) RGBD 8-best view 85.0 93.7 97.8 84.9 94.9 90.1 73.2 100.0 99.9 88.8 89.8 95.4 85.2 90.7
One2Any (Ours) RGBD 16-best view 84.8 98.3 98.8 95.2 95.9 93.3 76.2 100.0 99.9 92.9 95.1 94.4 93.9 93.8

performance of our method with 8 /16 reference views. Us-
ing the simple pose selection strategy, our method achieved
a 50% improvement with 8 reference views and a 59% im-
provement with 16 reference views. Notably, the perfor-
mance with 16 reference views surpasses LatentFusion [19],
which learns an object latent space to render additional
views. While FS6D [11] is specifically fine-tuned for the
LINEMOD dataset, OnePose [24] and OnePose++ [10] re-
quire over 200 reference views to compensate for the lack of
depth information but still perform poorly.

However, the simple selection strategy does not always
guarantee the optimal predicted pose. To address this, we
further analyze the best-case prediction results (last two rows
of Table E),where the predictions most closely resemble the
ground truth. These results show significant improvements,
demonstrating that our method outperforms many existing
multi-view approaches.

Furthermore, the experimental results demonstrate that
our method has the potential to be further enhanced and ex-
plored in multi-view setups, offering even greater capabili-
ties.
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