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In this supplement, we (1) show additional experiment
results on small Video LLM and multiple-view video un-
derstanding (Section A); (2) describe additional implemen-
tation details (Section B); (3) include additional visualiza-
tion of the question-answering results (Section C).

A. Additional Experiment Results
A.1. Results with small Video LLM
We now present additional experiment results of PAVE with
LLaVA-OneVision 0.5B models for audio-visual QA and
3D QA. Table 1 and Table 2 show the results. PAVE con-
sistently improves the 0.5B and 7B Video LLM’s perfor-
mance by a large margin across both settings. This indi-
cates that PAVE effectively leverages additional information
when adapting pre-trained Video LLMs into new settings.

A.2. Results on Enhanced Video Understanding
We present PAVE’s result on additional benchmarks in
the enhanced video understanding setting. Table 3 shows
PAVE’s results in the enhanced video understanding set-
ting with additional benchmarks. PAVE demonstrates a
substantial performance gain on VideoMME (w-subtitles).
However, we observe only marginal or no improvement
on ActivityNet-QA, EgoSchema, NextQA, and Perception-
Test. We hypothesize that this discrepancy may be due to:
(1) domain shift—our training data primarily consists of
third-person view videos, which may lead to a performance
drop in EgoSchema, and (2) the nature of the benchmark
questions, which may not require densely temporal infor-
mation for reasoning.

A.3. Results on Multi-view Video Understanding
Motivation and task set up. Understanding human activity
from video is crucial in many real-world applications, such
as augmented reality and robotic learning. Based on the per-
spective, videos can be broadly classified into ego-centric
and exo-centric views. Ego-centric videos capture first-
person interactions, focusing on close-up hand-object in-
teractions, while exo-centric videos provide a third-person
perspective, recording full-body postures and the surround-
ing environment. Both perspectives are essential for com-
prehensive human action understanding. Different from the

audio-visual QA and 3D QA, where the side-channel infor-
mation comes from other modalities, in this context, PAVE
regards exo-centric videos as side-channel information and
integrates it with ego-centric video to adapt the Video LLMs
for multi-view video understanding.

Training data. We use the training set from the Ego-
Exo4D demonstrator proficiency estimation benchmark [8]
as our training data, which consists of 1,904 question-
answer pairs. Each pair is associated with one ego-centric
video and four exo-centric videos. The task requires the
model to classify human action proficiency into one of four
categories: Novice, Early Expert, Intermediate Expert, or
Late Expert, based on both ego- and exo-centric videos.
However, only 1,656 question-answer pairs include the cor-
responding videos, as the videos for the remaining pairs
could not be downloaded due to privacy issues.

Implementation details. Considering the exo- and ego-
centric videos are synchronized along the temporal axis,
we sample 32 frames for each of the exo-centric videos.
To keep the encoding procedure consistent between the
ego- and exo-video, we use the same preprocessing of the
LLaVA-OneVision to reshape and crop the video frames.
We use SigLIP [20] as the visual encoder and it encodes and
downsamples each frame into 196 tokens. We pre-extract
the exo-video feature tokens offline to accelerate the train-
ing. We build PAVE on top of LLaVA-OneVision [9] and
train the model for 2 epochs.

Evaluation benchmark. We use the validation set of the
Ego-Exo4D [8] demonstrator proficiency estimation bench-
mark for evaluation and report accuracy as the metric. It
contains 466 questions and each of the questions is paired
with 1 ego-centric video and 4 exo-centric videos.

Baselines. We use the TimeSFormer (Ego+Exo) from Ego-
Exo4D [8] as our baseline. We also include a baseline
that directly fine-tunes the LLaVA-OneVision with LoRA
on the training set without using the exo-centric videos, de-
noted as LLaVA-OV-7B-FT. This baseline allows us to as-
sess whether PAVE can effectively utilize supplementary in-
formation.

Results. Table 4 shows the results of PAVE. Compared with
the LLaVA-OV-7B-FT, PAVE-7B achieves about 14.4% im-
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Method AVSD [1] AVQA [17] MUSIC-AVQA [10] TFLOPs Total / Trainable ParamsCIDEr Acc. Audio Acc. Visual Acc. Audio-Visual Acc. Overall Acc.

Zero-shot LMMs
LLaVA-OV-0.5B [9] 65.1 77.4 60.0 57.1 48.5 52.8 8.01 0.9B / -
LLaVA-OV-7B [9] 70.6 85.6 68.8 70.6 52.8 60.4 98.53 8.2B / -

Task-specific models
LLaVA-OV-0.5B-FT 117.6 86.4 69.6 76.3 62.8 67.6 8.01 0.9B / 35.2M
LLaVA-OV-7B-FT 124.9 90.8 75.4 89.3 72.3 77.4 98.53 8.2B / 161.5M

PAVE-0.5B (w/ audio) 134.5 90.4 77.3 89.8 74.1 78.8 8.08 0.9B / 41.4M
PAVE-7B (w/ audio) 152.9 93.8 79.7 93.0 78.0 82.3 98.63 8.2B / 170.5M

Table 1. Additional result of PAVE on the audio-visual understanding tasks with audio as additional information.

Method ScanQA [2] SQA3D[14] TFLOPs Total / Trainable ParamsC B-4 M R EM@1 EM@1

Zero-shot LMMs
LLaVA-OV-0.5B [9] 17.2 1.2 13.7 18.4 0.2 (28.0) 0.8 (43.0) 8.01 0.9B /-
LLaVA-OV-7B [9] 91.0 5.3 18.2 45.9 26.7 (44.3) 8.3 (50.7) 98.53 8.2B / -

Task-specific models
LLaVA-OV-0.5B-FT 70.5 6.5 14.3 36.9 20.5 (36.3) 44.1 (45.7) 8.01 0.9B / 35.2M
LLaVA-OV-7B-FT 95.1 13.5 19.1 47.4 27.4 (46.3) 55.8 (58.1) 98.53 8.2B / 161.5M

PAVE-0.5B (w/ 3D info) 84.2 13.1 17.0 42.1 23.1 (40.0) 51.1 (52.8) 8.13 0.9B / 41.4M
PAVE-7B (w/ 3D info) 103.4 16.0 19.9 49.0 29.1 (48.5) 59.0 (61.4) 98.68 8.2B / 170.5M

Table 2. Additional result of PAVE on the 3DQA tasks with 3D information as additional information.

provement by adding only 9M parameters and 0.17 TFLOPs
during inference. This big improvement indicates that
the exo-centric videos provide crucial additional informa-
tion for human action understanding. Moreover, PAVE
achieves state-of-the-art performance on the demonstra-
tor proficiency estimation benchmark, substantiating that
PAVE can adapt a pre-trained Video LLM to an unseen set-
ting by leveraging supplementary information.

B. Implementation and Experiment Details
We first describe the general implementation detail of the
PAVE in Section B.1. Then, we describe the experiment
details for 3 settings considered in the main paper, including
audio-visual QA (Section B.2), 3DQA (Section B.3), and
enhancing video QA (Section B.4). We also demonstrate
how we calculate the Flops for the model in Section B.5.

B.1. Implementation Detail of PAVE
Inside the temporal-aligned cross-attention layer, we add
rotary position embedding to the query and key tokens.
Specifically, we apply different rotary positional embed-
ding according to the layout of side-channel tokens zs. We
mainly consider two types of zs: (a) {zs} includes both
spatial and temporal dimensions, such as tokens from video
backbones or from a 3D backbone; and (b) {zs} only con-
tains temporal dimension, such as audio tokens. For the first
case, we will add 3D rotary positional embedding (along the
temporal, height, and width dimensions). For the second
case, we will only add rotary positional embedding along

the temporal axis. After cross-attention, we use a two-layer
MLP, followed by a layer norm. After the PAVE layers, we
add another two-layer MLP, followed by a layer norm, as
the adapter. We initialize the γ in the layer norm to zero.

B.2. Audio-Visual QA
In this setting, the input of the PAVE has two parts: (1) the
visual tokens zv from the Video LLM’s visual encoder, and
(2) the audio tokens zs from a side-channel signal encoder.

Visual Encoder. For zv , we follow the default setting
used in LLaVA-OneVision [9]. We uniformly sample 32
frames from the video and use the same preprocessing of the
LLaVA-OneVision to reshape and crop the video frames.
We use SigLIP [20] as the visual encoder and it encodes
and downsamples each frame into 196 tokens.

Side-Channel Signal Encoder. For zs, we follow the pre-
processing step of ImageBind [7], which resamples the au-
dio at 16KHz. We segment the audio into overlapping 2-
second clips with a 1-second stride and encode each clip
using the audio encoder of ImageBind. This process gen-
erates a 1024-dimensional audio token for every 1 second
of the audio signal. Since we do not fine-tune the audio en-
coder, we extract the audio feature tokens offline in order to
accelerate the training.

Network Architecture. For the PAVE design, we use 2
cross-attention layers with hidden dimension 512 and have
4 attention heads. For LoRA layers in the LLM, we use
LoRA r = 64 and LoRA α = 16.



Method ActivtityNet-QA EgoSchema NextQA PerceptionTest VideoMME (w-subs) FLOPs (TB) Total / Trainable Params

LLaVA-OV-0.5B [9] 50.5 26.8 57.2 49.2 43.5 8.01 0.9B / -
LLaVA-OV-7B [9] 56.6 60.1 79.4 57.1 61.5 98.53 8.2B / -

PAVE-0.5B (w/ video feature) 50.6 27.1 56.1 48.8 48.6 8.08 0.9B / 41.4M
PAVE-7B (w/ video feature) 57.1 57.4 79.6 56.0 62.9 98.63 8.2B / 170.5M

Table 3. Result of PAVE on the additional benchmarks in enhanced video understanding setting. PAVE uses densely sampled video frames
as additional information.

Model Acc. FLOPs (TB) Total / Trainable Params

Zero-shot LMMs
LLaVA-OV-0.5B 23.6 8.01 0.9B / -
LLaVA-OV-7B 23.6 98.53 -

Task-specific models
LLaVA-OV-0.5B-FT 28.2 8.01 0.9B / 35.2M
LLaVA-OV-7B-FT 29.8 98.53 8.2B / 161.5M
TimeSFormer (Ego+Exo)* [8] 43.7 - -

PAVE-0.5B 32.4 8.15 0.9B / 41.4M
PAVE-7B 44.2 98.70 8.2B / 170.5M

Table 4. Performance of PAVE on multi-view video understanding
with Ego-Exo4D Demonstrator Proficiency benchmark. LLaVA-
OV-7B-FT refers to directly fine-tuning the LLaVA-OneVision on
the training set. Our model achieves state-of-the-art performance
by only adding a small amount of parameters and FLOPs. * means
this baseline may use more training data than PAVE because some
of the videos are unavailable to us.

Training Details. For training, we use AdamW [13] opti-
mizer with a linear warmup using the first 3% of iterations.
We use the cosine annealing learning rate during the train-
ing. We set the base learning rate as 2e-5 and the batch size
as 32. All the experiments are run on 2 A100 80G GPUs.

Training data. We choose the open-end QA dataset
AVSD [1], and closed-end QA dataset AVQA [17] and
Music-AVQA [10] as training dataset. AVSD contains 79k
question-answer pairs across 7,985 videos with each paired
10 questions. AVQA has 40k question-answer pairs coupled
with 40k Videos. Music-AVQA consists of 32k question-
answer pairs and 9277 videos.

Evaluation benchmark. We follow the protocol in previ-
ous works [15, 18] to evaluate PAVE. For AVSD, we use
the AVSD@DSTC7 test split and report CIDEr score as
the metric. This benchmark consists of 1,000 audio-visual
questions. We use COCO API [12] to calculate the CIDEr
score between the model predictions and the ground truth
answers. For AVQA, we evaluate PAVE on the eval split and
report the accuracy as the metric. This benchmark contains
17k questions that require reasoning based on audio and vi-
sual information. For Music-AVQA, we evaluate PAVE on
the test split and report the accuracy as the metric. This
benchmark contains 9185 questions, which can be catego-
rized into visual, audio, and audio-visual questions.

B.3. 3DQA
In this setting, the input of the PAVE consists of two parts:
(1) the visual tokens zv from the Video LLM’s visual en-
coder, and (2) the 3D tokens zs from a side-channel signal
encoder.

Visual Encoder. For zv , we use the same setting as the one
in Section B.2.

Side-Channel Signal Encoder. For encoding the side-
channels information into zs, we utilize the 3D encoder
which contains two parts 1. a visual encoder which encodes
the RGB frames into visual feature tokens. 2. a spatial em-
bedding that adds the encoded 3D information on the visual
feature tokens. We uniformly extract 32 RGB-D frames
from the scan and use ViT [4] to extract the visual features
from the RGB frames. We then add spatial embeddings to
visual features following the LLaVA-3D [24] by making use
of the depth information and the camera pose. It generates
576 tokens for each frame, with a token dimension of 1024.
We pre-extract the 3D feature to accelerate the training.

Network Architecture and Training Details. For the
PAVE design and the training configuration, we use the
same hyper-parameters used in Section B.2.

Training data. For 3D QA tasks, we consider ScanQA [2]
and SQA3D [14]. ScanQA and SQA3D contain 25K and
26K training question-answer pairs, respectively. They
share the same scanning data set which contains 562 3D
scanning from ScanNet [3].

Evaluation benchmark. We report our model performance
on the ScanQA validation set, which contains 4,675 ques-
tions covering both object position reasoning and object
recognition, and the SQA3D test set with 3519 questions,
which consists of 5 different types of questions. Follow-
ing previous work [24], we report the CIDEr (C), BLEU-4
(B-4), METEOR (M), ROUGE(R), and top-1 Exact Match
(EM@1) metrics on ScanQA and report EM@1 on SQA3D.
We use the evaluation pipeline set up by LLaVA-3D to eval-
uate our model on ScanQA and SQA3D.

B.4. Enhancing Video QA
In this setting, the input of the PAVE has two parts: (1)
the visual tokens from the Video LLM’s visual encoder zv ,
extracted at sparsely sample video key frames, and (2) the



side-channel visual tokens zs, derived from a high frame
rate video.

Visual Encoder. For zv , we use the same setting as the one
in Section B.2.

Side-Channel Signal Encoder. In this case, the side-
channel signals zs are high frame rate videos. We sample
the video frames at the frame rate of 2fps and use the default
pre-processing step of the LanguageBind to reshape and
crop the video frames. To leverage LanguageBind [23] to
encode the high-frame-rate video frames, we split the video
frames along the temporal axis into multiple non-overlap
groups with each group containing 8 frames. We later con-
catenate the encoded features of all groups along the tem-
poral axis. To reduce the overhead of the PAVE, inspired by
the Slow-Fast [5], we downsample the spatial resolution of
the video feature of each video frame from 16 × 16 to 2 ×
2. We do not utilize the classification tokens from the output
of the LanguageBind. Since we do not fine-tune Language-
Bind’s video encoder, we pre-extract the video features in
order to speed up the training.

Network Architecture and Training Details. For the
PAVE design and the training configuration, we use the
same hyper-parameters used in Section B.2.

Training data. We create a subset from LLaVA-Video-
178K [21] by first sampling all videos longer than 1 minute
and then randomly choosing 2 question-answer pairs for
each video. This process creates a training set that contains
57K videos and 114K question-and-answer pairs.

Evaluation benchmark. We use VideoMME [6],
MVBench [11], and MLVU [22] as evaluation benchmarks.
VideoMME and MVBench are both comprehensive video
benchmarks and cover different types of subtasks, while
MLVU focuses on long video understanding. VideoMME
includes 6 key domains and 30 sub-classes. It contains 900
videos, ranging from less than one minute to nearly one
hour. There are 2,700 questions with each accompanied
by four options. MVBench includes 20 different sub-tasks,
such as object shuffling and fine-grained pose estimation,
which require detailed temporal information. In total, it
has about 4000 questions and 3900 videos. MLVU con-
tains 2175 questions and 1337 long videos. All benchmarks
adopt accuracy as the performance metric.

B.5. The Calculation of Inference FLOPs.
We now describe how the floating-point operations (FLOPs)
are reported in our experiments. Since the visual-encoder
and the side-channel information encoder are replaceable
modules in PAVE settings (i.e. we can use encoder with
different scales at different settings.), we only consider
the FLOPs of PAVE and LLM, provided by the LLM-
Viewer [19]. During the FLOPs calculation of LLM, we

consider 6272 visual tokens, and following the previous
work [16], we add 40 additional tokens for the text. We
then calculate and add the FLOPs of PAVE.

The FLOPs of PAVE is calculated as follows. The input
of the PAVE consists of two parts, the visual tokens zv from
the Video LLM’s visual backbone, and the side-channel in-
formation tokens zs. We consider the case that the visual
tokens zv come from 32 video frames and Video LLM’s
visual backbone generates 196 tokens for each frame.
• Audio-visual QA: We assume the length of the video at

inference time is 2 minutes and the audio encoder will
generate 1 token for each second of the audio. It yields
120 audio tokens. The cross-attention is conducted over
196 query tokens and 4 key tokens. PAVE thus introduces
about 0.07 TB and 0.10 TB FLOPs for 0.5B and 7B mod-
els, respectively.

• 3D QA: We uniformly sample 32 frames and send them
into the 3D backbone. It generates 576 tokens for each
frame and yields 18432 tokens in total. The cross-
attention is conducted over 196 query tokens and 576 key
tokens. PAVE introduces about 0.12 TB and 0.15 TB
FLOPs for 0.5B and 7B models, respectively.

• Enhancing video QA: We assume the length of the video
at inference time is 2 minutes—close to the average dura-
tion of videos on VideoMME and MVBench. We sample
the frames at 2 fps and sent them to the video backbone.
We down-sample the tokens of each frame spatially to 2
by 2 grids. It produces 960 video tokens in total. The
cross-attention is conducted over 196 query tokens and
30 key tokens. PAVE adds about 0.07 TB and 0.10 TB
FLOPs for 0.5B and 7B models, respectively.

• Multi-view Video Understanding: We uniformly sam-
ple 32 frames for each exo-centric video and send them
into the SigLIP. It generates 196 tokens for each frame
and yields 25,088 tokens for 4 exo-centric videos in total.
The cross-attention is conducted over 196 query tokens
and 784 key tokens. PAVE adds about 0.14 TB and 0.17
TB FLOPs for 0.5B and 7B models, respectively.

C. Additional Visualization
We present additional visualization of the PAVE’s results
for enhanced video QA in Figure 1 with videos from
VideoMME [6] and MVBench [11].
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