
Appendix for Q-PART

Abstract. In this appendix, we provides supplementary ma-
terials and detailed explanations for the main paper. Ap-
pendix A presents a comprehensive mathematical proof of
Theorem 1. Appendix B elaborates on our algorithm imple-
mentation, providing detailed descriptions of both training
and test-time adaptation phases of the proposed Q-PART
framework. Appendix C contains additional experimental
details, including formal definitions of evaluation metrics,
detailed implementation of baseline methods, and complete
ablation study results across all age cohorts.

A. Proof of Theorem 1

Proof: We begin by computing the expected variance loss
E[Lvar]. The variance loss is defined as
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K
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k=1

(ŷk → ȳ)2. (11)

Taking the expected value
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. (12)

Since E [ŷk → ȳ] = E[ŷk] → E[ȳ] = 0, each term
E
[
(ŷk → ȳ)2

]
can be expressed using the variance formula:

E
[
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]
= Var(ŷk → ȳ). (13)

Then, noted that:

Var(ŷk → ȳ) = Var(ŷk) + Var(ȳ)→ 2 Cov(ŷk, ȳ). (14)

Set the variance of the predictions from the augmented sam-
ples ŷk as ω2,

Var(ŷk) = ω2. (15)

Under Assumption 2 (Augmentation Independence), the
predictions ŷk are independent for different k. Compute the
Var(ȳ)

Var(ȳ) = Var

(
1

K

K∑

k=1

ŷk
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Now, compute the covariance Cov(ŷk, ȳ):

Cov(ŷk, ȳ) = Cov
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Since Cov(ŷk, ŷk) = Var(ŷk) = ω2, and under Assump-
tion 2, for j ↑= k, Cov(ŷk, ŷj) = 0, we have:

Cov(ŷk, ȳ) =
1

K
ω2. (18)

Now, compute Var(ŷk → ȳ):
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Thus,
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K
·K · ω2

(
1→ 1

K

)
= ω2

(
1→ 1

K

)
. (22)

Simplify:

E[Lvar] = ω2

(
K → 1

K

)
. (23)

The expected regression loss is:

E[Lreg] = E
[
(ŷ → y)2

]
= E

[
(ȳ → y)2

]
. (24)

Since we can obtain the prediction ŷ for the test sample xtest
with the average over all augmented versions:

ŷ = ȳ =
1

K

K∑

k=1

ŷk. (25)

Under Assumption 1 (Unbiased Augmentation):

ETaug [ŷk] = y, ↓k. (26)

the expected value of ȳ is equal to y,

E[ȳ] = E
[
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K
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]
=
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E[ŷk] = y. (27)

Therefore, we have:

E[Lreg] = E
[
(ȳ → E[ȳ])2

]
= Var(ȳ) =

ω2

K
. (28)

So far, we have:

E[Lreg] =
ω2

K
, (29)

E[Lvar] = ω2

(
K → 1

K

)
. (30)



Substitute Equation 29 into Equation 30:

E[Lreg] =
ω2

K
=

1

K
· E[Lvar]

(
K

K → 1

)
=

E[Lvar]

K → 1
. (31)

Recall that for K ↔ 2, the following inequality holds:

1

K → 1
↗ 2

K
. (32)

Therefore, we have:

E[Lreg] =
E[Lvar]

K → 1
↗ 2E[Lvar]

K
. (33)

↭
Under Assumptions 1 and 2, we have established that

minimizing the variance loss E[Lvar] effectively reduces the
expected regression error E[Lreg], with the bound improving
as the number of augmentations K increases. This theoret-
ical result justifies the effectiveness of our variance mini-
mization strategy in test-time training.

B. Algorithm

As shown in Algorithm 1, our approach consists of two
phases. During training, we first extract features through an
encoder and decompose them into periodic and aperiodic
components. The periodic component is modeled using
sinusoidal functions with learned parameters (frequency,
phase, bias, and velocity), while the aperiodic component is
captured through a continuous-time framework using cubic
spline interpolation. During test-time adaptation, we gener-
ate K augmented views of each test sample and employ a
differential learning rate strategy: applying smaller learning
rates to periodic components’ batch normalization parame-
ters to maintain stable cardiac patterns, while using larger
learning rates for aperiodic components to enable flexible
patient-specific adaptation.

C. Experiment

C.1. Evaluation Metrics

MAE measures the average absolute differences between
predicted and ground truth LVEF values. RMSE empha-
sizes larger prediction errors by computing the square root
of the mean squared differences. MAPE calculates the per-
centage error relative to the ground truth value, provid-
ing a scale-independent assessment of model performance.
These metrics are formally defined as:

MAE =
1

n

n∑

i=1

|yi → ŷi|, (34)

RMSE =

√√√ 1

n

n∑

i=1

(yi → ŷi)2, (35)

Algorithm 1 Test-time Training for Quasi-Period Network

Require: Training data Dtrain = {(xi, yi)}Ni=1, test sam-
ple xtest

Ensure: Adapted model parameters ε
1: // Training Phase
2: for each training iteration do

3: z ↘ Enc(x) ϑ Initial feature extraction
4: // Periodic Component
5: f,ϖ, b, v ↘ p(z) ϑ Extract periodic parameters
6: ẑperiod ↘ cos(2ϱ(ft → ϖ)) + sin(2ϱ(ft → ϖ)) +

vt+ b
7: // Aperiodic Component
8: z↑ ↘ z → ẑperiod ϑ Residual features
9: V (t) ↘ CubicSpline(z↑

t) ϑ Continuous path
10: ẑaperiod ↘ z↑

0 +
 T
0 fω(ẑ

aperiod
t , t)dV (t)

11: // Loss Computation
12: Calculate training loss Ltotal using Eq. 6
13: Update model parameters
14: end for

15: // Test-time Training Phase
16: for each test sample xtest do

17: // Generate Augmented Samples
18: {xk

test}Kk=1 ↘ Taug(xtest)
19: for each adaptation iteration do

20: for k = 1 to K do

21: Forward pass xk
test through network

22: Compute predictions ŷk
23: end for

24: // Compute Test-time Losses Calculate test-time
loss Ltest using Eq. 9

25: // Differential Adaptation
26: Update periodic BN parameters with small

learning rate
27: Update aperiodic BN parameters with large

learning rate
28: end for

29: end for

MAPE =
100%

n

n∑

i=1

|yi → ŷi
yi

|, (36)

where yi and ŷi denote the ground truth and predicted LVEF
values respectively, and n is the number of test samples.

As for AUROC, we follow the clinical guidelines and
set four critical LVEF thresholds: 35%, 40%, 45%, and
50%. These thresholds are clinically significant as they cor-
respond to different levels of cardiac dysfunction. For each
threshold, we compute the AUROC score by treating LVEF
prediction as a binary classification problem, where values
below the threshold indicate potential cardiac dysfunction.
The mean AUROC across all thresholds provides a compre-



Table 4. All Ablation Study Results of Key Components. Analysis of three key components: QP-Net (Quasi-Period Network), LR
(Learning Rate Strategy), and VM (Variance Minimization).

QP-Net LR VM Pre-School School Age Adolescence
MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

8.129 0.1681 10.09 8.267 0.1454 9.999 8.222 0.1498 10.2
✁ 7.949 0.1666 9.909 7.400 0.1368 8.959 7.524 0.1451 9.488
✁ ✁ 7.909 0.1656 9.878 7.480 0.1331 9.031 7.501 0.1403 9.383

✁ 7.842 0.1640 9.714 6.683 0.1260 8.767 7.146 0.1390 9.014
✁ ✁ 7.283 0.1619 9.307 6.708 0.1243 8.437 6.988 0.1344 9.002
✁ ✁ ✁ 7.235 0.1611 9.290 6.706 0.1244 8.432 6.980 0.1344 8.950

hensive assessment of the model’s ability to identify clini-
cally relevant cardiac conditions.

C.1.1 Baseline Implementation

Segmentation-based methods follow a two-step process:
first segmenting the left ventricle in each frame of the
echocardiogram video, then calculating LVEF based on
the end-diastolic volume (EDV) and end-systolic volume
(ESV). Specifically, after obtaining segmentation masks for
all frames, the frames with maximum and minimum left
ventricular volumes are identified as end-diastolic and end-
systolic frames, respectively. LVEF is then calculated using
the following formula:

LVEF =
EDV → ESV

EDV
≃ 100%, (37)

where EDV and ESV are computed from the segmentation
masks using standard clinical volume estimation methods.

Vision-language models approach LVEF prediction as
a cross-modal similarity task. These methods first encode
the echocardiogram video into visual tokens through a vi-
sion encoder. Simultaneously, they construct a series of
language tokens representing different LVEF values (e.g.,
”The left ventricular ejection fraction is X percent”, where
X ranges from 0 to 100). The predicted LVEF is determined
by finding the language token that exhibits the highest sim-
ilarity score with the visual tokens in the joint embedding
space.

C.1.2 All results for Table 3

We show the all results from three cohorts in Table 4.
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