
Revealing Key Details to See Differences: A Novel Prototypical Perspective for
Skeleton-based Action Recognition

Supplementary Material

This supplementary material offers additional imple-
mentation details and experimental results to support and
elaborate on the main submission. Specifically, we detail
the architecture of ProtoGCN, including input and output
sizes, as well as the specific hyperparameters of each block.
Then, we present more experimental results with corre-
sponding analyses to demonstrate the effectiveness of the
proposed method. Finally, we show the class-wise perfor-
mance comparison to assess the advantages of ProtoGCN in
distinguishing similar actions.

A. Implementation Details
Source Code The source code for ProtoGCN is now
available. This code allows for the reproduction of our
experimental results and includes detailed instructions for
data acquisition, preprocessing, dependencies, and the ex-
act commands needed to run the experiments.
Model Architecture The detailed architecture of Pro-
toGCN is shown in Table 1. The entire network consists
of 10 basic blocks, and the base channel width is set to
96. The activation function ϕ<intra> denotes softmax and
ϕ<inter> denotes tanh. Their dimensions are aligned via
channel broadcasting. The classification layer consists of
a global average pooling, a fully connected layer, and a
softmax operation. At the 5-th and 8-th blocks, the tempo-
ral dimension is halved by temporal pooling and the chan-
nel width is doubled. Each block mainly contains a spa-
tial modeling module, a temporal modeling module, and
residual connections. To model the temporal correlation of
the skeleton sequences, we employ the temporal module of
PYSKL [3], whose baseline module is [1, 9]. It consists of
four branch operations with dilated temporal convolutions
for dimension reduction and different combinations of ker-
nel sizes and dilation rates. The results of the four branches
are concatenated as the final output. The number of joints
N is 25 for NTU RGB+D 60 [10] & NTU RGB+D 120 [8]
and 20 for Kinetics-Skeleton [5] & FineGYM [11].
Preprocessing Protocol For the four datasets men-
tioned above, we adopt the data pre-processing proce-
dure of PYSKL [3], which integrates various effective pre-
processing techniques from previous methods [1, 7, 12, 14,
15] to perform efficient spatial and temporal augmentations.
Training In Table 2, we provide the default hyperparam-
eter settings used for training our ProtoGCN model on the
NTU RGB+D 60, NTU RGB+D 120, Kinetics-Skeleton,
and FineGYM datasets. These hyperparameter settings
have been carefully tuned to achieve optimal performance

Layers Blocks Output Size

Input 100×N × 3

Encoder

Encoding Block 1 100×N × 96
Encoding Block 2 100×N × 96
Encoding Block 3 100×N × 96
Encoding Block 4 100×N × 96
Encoding Block 5 50×N × 192
Encoding Block 6 50×N × 192
Encoding Block 7 50×N × 192
Encoding Block 8 25×N × 384
Encoding Block 9 25×N × 384

Encoding Block 10 25×N × 384

Classifier
GAP 384
FC 384

Softmax # Action Class

Table 1. Shape of tensor for each block of ProtoGCN. The output
size of encoding blocks denotes the number of frames × the num-
ber of joints × the dimension.

Configuration Hyperparameter

random rotation True
uniform sampling True
window size 100
weight decay 5e-4
base lr 0.1
lr scheduler cosine decay
batch size 64
epochs 150
optimizer SGD

Table 2. Default hyperparameters for ProtoGCN.

while maintaining a balance between model complexity
and computational efficiency. By using consistent hyper-
parameter settings across all experiments, we ensure a fair
comparison and evaluation of our ProtoGCN model’s per-
formance on different datasets and modalities. The learn-
able matrices are randomly initialized for skeleton topology
modeling. Besides, the random seed is fixed to ensure ex-
periment reproducibility.
Explanation of Prototype The term prototype in this
study refers to constituent basic patterns of body joint re-
lations, which are finer-grained representations and not tied
to specific classes. The Prototype Reconstruction Network



(PRN) leverages these prototypes as building blocks to con-
struct Z, whose discriminative ability is enhanced essen-
tially through the contrastive learning loss. Notably, the for-
mulation of the linear combination constrains the model to
craft Z solely using these prototypes. Thus, the prototypes
must capture distinctive joint relations (or motion patterns),
ensuring the reconstructed representations are both distinc-
tive and discriminative.

In practice, PRN is only used during training and does
not affect inference. The Motion Topology Enhancement
(MTE), with shared weights, is applied to each GCN layer,
while PRN is applied only to A(L). Finally, MTE and PRN
could interact with the GCN backbone via backward gradi-
ents during training.
Explanation of Softmax Output In the reconstruction
module, the softmax activation function is utilized to com-
pute response signals. Specifically, the softmax operation
produces a weighted average of target prototypes based on
the similarity between the query and the input. When re-
constructing relationships between points and points, e.g.,
point 20 and point 24, the softmax output represents the
combinatorial proportion of different prototypes. Notably,
this output differs from that of the standard attention mech-
anism, which directly reflects token similarity. Instead,
the reconstructed representation Z, derived from the mem-
ory module, captures the point-to-point attention relation-
ship. Given that a 25× 25 skeleton sample could yield 625
softmax outputs, interpreting individual outputs through vi-
sualization is challenging. Therefore, we instead visualize
Z in Figures 1 and 4 of the paper to illustrate attention val-
ues in the conventional sense.
Explanation of Visualization For existing adaptive GCN
models [1, 2, 6, 12], the learned topology A ∈ RN×N×C

plays a critical role in comprehensive spatial-temporal mod-
eling. In this context, our method enables the network
to adaptively discover and assemble learnable prototypes,
thereby generating more discriminative representations. To
visually demonstrate this effect, we provide visualizations
of the learned topology matrices.

Specifically, these visualizations are obtained by averag-
ing the 25 × 25 × 256 topology matrix along the channel
dimension, assuming the number of joints N is 25. Av-
eraging across the 256 channels, derived from the original
3-D representation, reduces inter-element variability within
each row, thereby emphasizing the importance of specific
joints. The results indicate that more noticeable dispari-
ties between related joints and non-related ones highlight
the impact of introducing prototype reconstruction. Addi-
tionally, the increase in scales is attributed to the more pro-
nounced contrast between rows. The clearer differentiation
is also reflected by the larger contrast between rows. These
visualization results further validate the effectiveness of the
proposed method.

Type Symbol Descriptions

Graph
G Skeleton graph
V Vertices of skeleton graph
E Edges of skeleton graph

Network

L The number of GCN layers
l Current layer
c Total number of classes
K The number of multi-head
C ′ Projected dimension

Losses
LCE Cross-entropy loss
LCSC Class-specific contrastive loss
L Total loss

Constants
N The number of body joints
T The number of frames
C Feature dimension

Variables

ŷ Prediction label
f Input contrastive feature
f The average within batch
M Memory bank
m Class-specific aggregation

Learnable
Parameters

H Skeleton representation
A Topology matrix
W Learnable weight matrix
Wmemory Learnable memory matrix
Wquery Learnable query matrix
X Reshaped representation
R The addressing weights
Z Enhanced representation
WQ Projected query matrix
WK Projected key matrix
HQ Latent query vector
HK Latent key vector

Functions
σ The ReLU activation
ϕ<intra> The softmax activation
ϕ<inter> The tanh activation

Hyper-
parameters

npro The number of prototypes
α Momentum parameter
τ Temperature parameter
λ Balance parameter

Table 3. Summary of symbols.

Symbols of ProtoGCN In Table 3, we present the sum-
mary of symbols used to describe ProtoGCN in the paper.

B. Additional Experimental Results
In this section, we present additional experimental results to
provide a more comprehensive evaluation of our ProtoGCN
model’s performance on various datasets and modalities.



Methods Publication

NTU RGB+D 60

X-Sub X-View

J B JM BM J B JM BM

ST-GCN [14] (†) AAAI 2018 87.8 88.6 85.8 86.2 95.5 95.0 93.7 92.8
CTR-GCN [1] (†) ICCV 2021 89.6 90.0 88.0 87.5 95.6 95.4 94.4 93.6
ST-GCN++ [3] ACM MM 2022 89.3 90.1 87.5 87.3 95.6 95.5 94.3 93.8
InfoGCN [2] CVPR 2022 89.8 90.6 88.9 88.6 95.2 95.5 94.2 93.6
SkeletonGCL [4] ICLR 2023 90.8 91.1 - - 95.3 95.4 - -
FR-Head [16] CVPR 2023 90.3 91.1 88.7 87.6 95.3 95.0 93.6 92.6
GAP [13] ICCV 2023 90.2 91.2 88.0 87.8 95.6 95.5 93.7 93.2
HD-GCN [6] ICCV 2023 90.6 90.9 - - 95.7 95.1 - -
BlockGCN [17] CVPR 2024 90.9 91.3 88.7 88.3 95.4 95.3 93.3 92.6

Ours 91.5 92.0 89.3 89.1 96.3 96.2 95.5 94.0

Table 4. Performance comparison of different skeleton-based action recognition methods on the NTU RGB+D 60 dataset in terms of the
Top-1 accuracy (%). For studies marked with (†), we rely on the performance reported in PYSKL [3], as the official code did not provide
modality-specific performance. The best performances are highlighted in bold.

Modality NTU RGB+D 60 NTU RGB+D 120 Kinetics-Skeleton FineGYMX-Sub X-View X-Sub X-Set Top-1 Top-5

J1 91.54 96.33 85.52 88.35 48.02 72.68 93.28
J2 91.36 96.20 85.07 87.95 47.88 72.72 93.02

B1 91.98 96.15 88.96 90.01 47.06 71.36 94.84
B2 91.85 95.76 88.27 89.83 46.78 71.11 94.84

K1 91.59 96.61 88.30 89.65 45.86 70.17 94.44
K2 91.31 96.41 87.81 89.52 45.58 70.11 94.34

JM 89.31 95.50 83.17 86.03 44.10 69.12 94.07
BM 89.09 93.98 83.46 85.33 40.10 65.55 93.31
KM 88.46 94.33 84.19 85.25 42.21 66.67 93.38

2 ensemble 92.96 97.23 89.75 91.23 49.85 73.96 95.35
4 ensemble 93.53 97.49 90.43 91.86 51.33 75.06 95.62
6 ensemble 93.81 97.76 90.92 92.16 51.85 75.55 95.94

Table 5. Classification accuracies (%) of ProtoGCN for different modalities on the NTU RGB+D 60, NTU RGB+D 120, Kinetics-Skeleton,
and FineGYM datasets. We adopt the widely-used six-stream ensemble strategy introduced in InfoGCN [2]. For InfoGCN [2], K denotes
the newly proposed skeleton representation, and KM represents the corresponding motion modality. Denotations similar to J1 and J2

represent the repeated experimental results for the same setup.

B.1. Single Modality Comparisons

To gain further insights into the contribution of each modal-
ity to ProtoGCN’s overall performance, we conduct exper-
iments training the model on each single modality sepa-
rately. Table 4 summarizes the detailed results of different
action recognition methods based on each single modality.
Here J denotes the joint modality, B represents the bone
modality, JM indicates the joint motion modality and BM
signifies the bone motion modality. The table reports the
top-1 accuracy for X-Sub and X-View evaluations on the

NTU RGB+D 60 dataset, using results from both published
papers and official codes.

We note that the performance gain of ProtoGCN is con-
siderable. These results demonstrate the effectiveness of the
proposed method in learning discriminative features from
individual modalities. By examining the performance of
each modality, we can identify the strengths and weaknesses
of our model in capturing modality-specific information and
guide future research efforts to enhance multi-modal feature
fusion. Additionally, single-modality performance serves
as a baseline to measure the benefits of multi-modal fusion
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Figure 1. The accuracy difference (%) between our method and PYSKL [3] for 120 action classes under the NTU-120 X-Sub setting.

in ProtoGCN. Effective recognition using a single modal-
ity is particularly important for real-world applications with
computational constraints. As demonstrated in Table 4,
ProtoGCN achieves superior single-modality performance
compared to state-of-the-art methods, underscoring its ro-
bustness and effectiveness.

B.2. Multi-modal Ensemble on All Benchmarks
In skeleton-based action recognition, multi-modal ensemble
methods [1, 2, 12, 16] are widely used to improve perfor-
mance. Typically, the networks with the same architecture
are trained separately for different modalities, and the pre-
dicted scores from each stream are combined to generate
the final results. In this study, we adopt the widely-used
six-stream ensemble strategy introduced in InfoGCN [2].

The results on four benchmark datasets across all eval-
uation protocols are presented in Table 5. Notably, perfor-
mance consistently improves as the number of modalities
in the ensemble increases across all datasets. By comparing
the results of single modality training with those of multi-
modal fusion, we quantify the synergistic effect of combin-
ing complementary information from different modalities to
enhance the overall recognition accuracy.

C. Class-wise Accuracy Comparison
In this section, we present the class-wise performance com-
parison to assess the advantages of ProtoGCN in distin-
guishing similar actions. We provide the detailed perfor-
mance comparison between ProtoGCN and the baseline
PYSKL [3] on the NTU-120 dataset with the bone modality.

The performance gains against the baseline PYSKL [3]
across all 120 classes are shown in Figure 1. It is ev-
ident that ProtoGCN delivers notable improvements in a
significantly greater number of classes. Specifically, com-
pared with PYSKL, ProtoGCN achieves performance im-
provements in the majority of action classes (84 out of 120
classes), maintains the same performance in 2 classes, and
exhibits a slight performance decrease in 34 classes.

For some action classes such as ‘cutting nails’, ‘cutting
paper’, ‘making OK sign’, etc., the model’s performance
would be slightly decreased. On the one hand, our analysis
revealed that the distinguishing factor between these actions
and good ones is that the former are object-related, making
it challenging to recognize them only with skeleton data.
For example, upon analyzing ‘cutting nails’, the factor is
the presence of an object being held, such as nails and pa-
per, which is beyond the scope of skeleton-based inputs. On
the other hand, the primary factor for poorly performed ac-
tions is the abstraction of body joints, as it lacks the neces-
sary details for recognition, such as fingers for ‘making OK
sign’. Nevertheless, for similar actions, such as ‘typing on
a keyboard’, ‘reading’, and ‘writing’, ProtoGCN achieves
superior recognition performance. As a whole, these results
demonstrate the effectiveness of the proposed method.
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