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Figure 1. Failure Case Analysis. (a) illustrates cases where au-
dible objects have completely disappeared, while (b) presents the
model’s performance when audible objects are partially occluded.

Table 1. Comparison results with metrics in TPAVI [14].

Methods AVS-S4 AVS-MS3 AVSS VPO-SS VPO-MS VPO-MSMI

J Fm J Fm J Fm J Fm J Fm J Fm

CAVP 67.5 75.9 45.2 57.1 32.2 37.1 36.8 40.0 35.1 39.5 37.8 39.3
SESI 83.5 91.2 60.3 71.3 41.3 46.9 42.3 48.8 42.8 49.4 42.5 48.5
AVSBias 82.9 92.8 66.1 79.2 41.9 47.6 42.2 46.7 41.5 44.2 42.4 47.2
AVSStone 83.2 91.3 67.3 77.6 48.5 53.2 41.5 47.3 42.1 47.3 41.9 46.2
Ours 85.7 93.5 69.2 78.9 50.7 55.3 46.3 49.1 44.1 51.6 44.8 50.7

0.1. Failure Case Analysis.

Fig. 1 (a) shows the model does not segment other silent
regions when the audible object completely disappears. Fig.
1(b) indicates that when an object is partially visible, the
significant reduction in visual information weakens the AV
alignment, thus degrading segmentation quality.

Table 2. More comparisons with recent methods.

Methods
AVS-Object-S4 AVS-Object-MS3 AVSS

J&Fβ ↑ J ↑ Fβ ↑ J&Fβ ↑ J ↑ Fβ ↑ J&Fβ ↑ J ↑ Fβ ↑
[13] [TCSVT24] 87.1 83.3 90.8 72.1 67.3 77.0 - - -
[2] [ICPR24] 88.1 84.5 91.6 70.4 64.2 76.6 39.7 42.4 37.0
[8] [WACV24] 85.1 81.5 88.6 66.2 63.1 69.1 - - -
Ours 89.6 85.7 93.5 74.1 69.2 78.9 53.0 50.7 55.3

0.2. Module Effectiveness Analysis.

We visualize the segmentation results from the ablation of
CST and UE. Fig. 2 shows the model with CST accurately
segments sounding objects. Meanwhile, the model with UE
avoids over-segmentation when the sound state changes.

0.3. More Method Comparisons.

Table 2 shows that our method consistently outperforms the
existing methods [2, 8, 13] on the AVS datasets with metrics
in TPAVI.

*Corresponding author.

Figure 2. Visual results of the ablation study.

1. More Implementation Details
1.1. Implementation Details.
Our framework is trained on eight NVIDIA V100 GPUs
in parallel mode. In particular, we train 80 epochs on the
AVSS dataset and 40 epochs on the VPO dataset. Follow-
ing the standard setup in [4, 6, 15], we employ a crop size of
224 × 224 pixels for all visual frames across experiments.
For data augmentation, images are randomly flipped hori-
zontally, adjusted with color jitter, and scaled within a ratio
range of 0.5 to 2.0. For network optimization, we utilize
AdamW [9] with an initial learning rate of 1 × 10−4 , ep-
silon set to 1 × 10−8, and betas set to [0.9, 0.999]. We ap-
ply a warmup strategy with 2 warmup epochs and a warmup
learning rate of 4 × 10−6. For initialization, we load pre-
trained weights from ImageNet [3] for the visual model and
from AudioSet [5] for the audio model, as in [7, 10, 11, 15].

1.2. Network Configuration.
Our framework is end-to-end trainable, with all components
parameterized by neural networks. We employ MIT-B5 [12]
as our visual backbone for visual feature extraction, while
the audio encoder is based on HT-SAT [1], which is frozen
during the training process. The decoder comprises MLP
layers for fused multi-scale feature maps, convolutional lay-
ers for spatial and temporal uncertainty estimation, and a
Multi-Head Attention layer to capture temporal dynamics
across the T ×D dimension. For the audio-guided modality
alignment process, the thresholds σa for determining posi-
tive and negative samples is set to 0.5, and the temperature
parameter τ is set to 0.1.
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