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Abstract

This supplementary material presents more details on the theoretical results in the main paper. More implementation details
of the proposed method and more experimental results are also provided for better reference to the readers. The structure of the
supplementary material is organized as follows. In the first section, we introduce the necessary notations and definitions, laying
the foundation for the subsequent analysis. Building on this, the second section presents the rotation equivariant errors of two
commonly used downsampling operators, accompanied by detailed proof processes to ensure clarity and rigor. Similarly, the third
section focuses on the rotation equivariant errors of two common upsampling operators, again providing comprehensive proofs
to substantiate the findings. In the fourth section, we take the U-Net network from the N2N method as an illustrative example.
Within this context, we derive and present the equivariant error bounds for the complete U-Net network under fixed discrete
angles, formulated as theorems. Extending this analysis, we further provide the equivariant error bounds for the complete U-Net
network under arbitrary rotation angles, which are summarized in the form of corollaries. In the fifth section, we present additional
experimental results and visualizations to further demonstrate the effectiveness of the proposed method.

I. NOTATIONS AND DEFINITIONS

We first introduce some necessary notations and preliminaries as follows.
We consider the equivariance on the orthogonal group O(2). Formally, O(2) = {A ∈ R2×2|ATA = I2×2}, which contains

all rotation and reflection matrices. Without ambiguity, we use A to parameterize O(2). The Euclidean group E(2) = R2⋊O(2)
(⋊ is a semidirect-product), whose element is represented as (x,A). Restricting the domain of A and x, we can also use this
representation to parameterize any subgroup of E(2). In practice, the subgroup is usually assumed to contain t rotations with
2π
t degree for an integer t ∈ N+.

An image I ∈ Rn×n is viewed as a two-dimensional discretization of a smooth function r : R2 → R, at the cell-center of
a regular grid with n× n cells, i.e., for i, j = 1, 2, · · · , n,

Iij = r(xij), (1)

where xij=
((
i− n+1

2

)
h,
(
j− n+1

2

)
h
)T

and h is the mesh size.
An intermediate feature map F ∈ Rn×n×t in equivariant networks is a multi-channel tensor, which can be viewed as the

discretization of a continuous function defined on Ẽ = R2⋊S, where S is a subgroup of O(2) and t is the number of elements
in S. Formally, F can be represented as a three-dimensional grid tensor sampled from a smooth function e : R2 × S → R,
i.e., for i, j = 1, 2, · · · , n,

FA
ij = e(xij , A), (2)

where xij is defined in (1) and A ∈ S.
With above notations, the transformations on the input and feature maps can be mathematically formulated. Specifically, in

the continuous domain, for an input r ∈ C∞(R2) and feature map e ∈ C∞(E(2)), the transformation Ã ∈ O(2) acts on r
and e respectively by:

πR
Ã
[r](x) = r(Ã−1x),∀x ∈ R2,

πE
Ã
[e](x,A) = e(Ã−1x, Ã−1A),∀(x,A) ∈ E(2).

(3)

In particular, if Aθ ∈ O(2) is the rotation matrix
[
cos θ, sin θ
− sin θ, cos θ

]
, then the corresponding rotation operators can be expressed

by πR
θ and πE

θ .
Besides, in the discrete domain, we can also define the transformation Ã ∈ S on the input image and feature map as

followings: (
π̃R
Ã
(I)
)
ij
= πR

Ã
[r](xij),(

π̃E
Ã
(F )
)A
ij
= πE

Ã
[e](xij , A),

∀i, j = 1,2, · · · , n,A ∈ S.

(4)
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Similarly, the rotation operators can be denoted as π̃R
θ and π̃E

θ .
Before the proof of the theorem, we provide the definitions of commonly used downsampling and upsampling methods in

the continuous domain.
Maxpooling Downsampling. Maxpooling is a commonly used downsampling method in CNNs, which reduces the spatial
dimensions of feature maps by sliding a fixed-size window over the feature map and selecting the maximum value within each
region as the output [1]. In the continuous domain, we can define maxpooling operator M(·) as follows,

[M(F )](x,A) = max{FA
ij , F

A
i+1,j , F

A
i,j+1, F

A
i+1,j+1} = maxΩij

FA
ij , (5)

where x = [x1, x2]
T ∈ R2 denotes the spatial coordinates, and x1 ∈ [xij1, xi+1,j1], x2 ∈ [xij2, xi,j+12], Ωij = {(i, j), (i +

1, j), (i, j + 1), (i+ 1, j + 1)}.
Stride Downsampling. Stride Downsampling is also a widely used downsampling operator which reduce the size of the feature
map by adjusting the stride of the convolution operation [2]. In the continuous domain, we can define stride downsampling
operator S(·) as follows,

[S(F )](x,A) = FA
i,j+1, (6)

where x = [x1, x2]
T ∈ R2 denotes the spatial coordinates, and x1 ∈ [xij1, xi+1,j1], x2 ∈ [xij2, xi,j+12].

Nearest Neighbor Upsampling. Nearest neighbor interpolation is an image scaling method that fills the pixels of the
interpolated image by selecting the original pixel value closest to the target pixel position. In the continuous domain, we
can define the nearest neighbor operator N(·) as follows,

[N(F )](x,A) = FA
i⋆j⋆ , (7)

where (i∗, j∗) = argminij ||xij − x||22.
Bilinear Upsampling. Bilinear interpolation calculates the new pixel value by taking the weighted average of the four
surrounding known pixel values. In the continuous domain, we can define the bilinear interpolation operator B(·) as follows,

[B(F )](x,A) =
(v2 − x2)

(v2 − v1)

[
(u2 − x1)

(u2 − u1)
f(Q11) +

(x1 − u1)

(u2 − u1)
f(Q21)

]
+

(x2 − v1)

(v2 − v1)

[
(u2 − x1)

(u2 − u1)
f(Q12) +

(x1 − u1)

(u2 − u1)
f(Q22)

]
=λ11f(Q11) + λ21f(Q21) + λ12f(Q12) + λ22f(Q22)

=

2∑
i=1

2∑
j=1

λijf(Qij), (8)

where λij are the coefficients of bilinear interpolation and f(Qij) represent the grid points, x = [x1, x2]
T ∈ R2 denotes the

2D spatial coordinates, x1 ∈ [xij1, xi+1,j1], x2 ∈ [xij2, xi,j+12].

II. PROOF OF EQUIVARIANCE ERROR FOR DOWNSAMPLING OPERATORS

A. Proof of equivariance error for maxpooling downsampling

Theorem 1. Assume that a feature map F ∈ Rn×n×t is discretized from the smooth function e : R2 × S → R, |S|= t, the
mesh size is h, M(·) is the downsampling operator. If for any A,B ∈ S, x ∈ R2, the following conditions are satisfied:

∥ ∇e(x,A) ∥≤ G, (9)

then the following results are satisfied:

|M
[
π̃E
B

]
(F ) (x,A)− πE

B [M (F )] (x,A) |≤ 2
√
2Gh. (10)

Proof. From the above definition we can deduce as follows:

[M
[
π̃E
B

]
(F )] (x,A) = M

(
π̃E
B (F )

)
(x,A) = max{

(
π̃E
B(F )

)A
ij
,
(
π̃E
B(F )

)A
i+1,j

,
(
π̃E
B(F )

)A
i,j+1

,
(
π̃E
B(F )

)A
i+1,j+1

}
= max{e(B−1xij , B

−1A), e(B−1xi+1,j , B
−1A), e(B−1xi,j+1, B

−1A), e(B−1xi+1,j+1, B
−1A)}

= maxΩije(B
−1xij , B

−1A), (11)

πE
B [M (F )] (x,A) = M(F )(B−1x,B−1A)

= max{e(xi′j′ , B
−1A), e(xi′+1,j′ , B

−1A), e(xi′,j′+1, B
−1A), e(xi′+1,j′+1, B

−1A)}
= maxΩi′j′ e(xi′j′ , B

−1A), (12)

2



where x = [x1, x2]
T ∈ R2, B−1x = [x′

1, x
′
2]

T ∈ R2 denotes the spatial coordinates, and x1 ∈ [xij1, xi+1,j1], x2 ∈
[xij2, xi,j+12], x′

1 ∈ [xi′j′1, xi′+1,j′1], x′
2 ∈ [xi′j′2, xi′,j′+12]. We define xîĵ as the coordinates of the maximum point in

(11), xĩj̃ as the coordinates of the maximum point in (12). By the definition of xîĵ , we have ∥ xîĵ − x ∥22≤
√
2h. Since B is

an orthogonal matrix, we have
||B−1xîĵ −B−1x||22≤

√
2h. (13)

By the definition of xĩj̃ ,
||xĩj̃ −B−1x||22≤

√
2h. (14)

From (13) and (14) we can derive

||B−1xîĵ − xĩj̃ ||
2
2≤ ||B−1xîĵ −B−1x||22+||xĩj̃ −B−1x||22≤

√
2h+

√
2h = 2

√
2h. (15)

From (9) and (15) and by using the Lagrange Mean Value Theorem, we can derive:

|M
[
π̃E
B

]
(F ) (x,A)− πE

B [M (F )] (x,A) |= |e(B−1xîj , B
−1A)− e(xĩj , B

−1A)|≤ 2
√
2Gh. (16)

□

B. Proof of equivariance error for stride downsampling

Theorem 2. Assume that a feature map F ∈ Rn×n×t is discretized from the smooth function e : R2 × S → R, |S|= t, the
mesh size is h, S(·) is the stride downsampling operator. If for any A,B ∈ S, x ∈ R2, the following conditions are satisfied:

∥ ∇e(x,A) ∥≤ G, (17)

then the following results are satisfied:

|S
[
π̃E
B

]
(F ) (x,A)− πE

B [S (F )] (x,A) |≤ 2
√
2Gh. (18)

Proof. From the above definition we can deduce as follows:

[S
[
π̃E
B

]
(F )] (x,A) = S

(
π̃E
B (F )

)
(x,A) =

(
π̃E
B(F )

)A
i,j+1

= e(B−1xi,j+1, B
−1A), (19)

πE
B [M (F )] (x,A) = M(F )(B−1x,B−1A) = e(xi′,j′+1, B

−1A), (20)

where x = [x1, x2]
T ∈ R2, B−1x = [x′

1, x
′
2]

T ∈ R2 denotes the spatial coordinates, and x1 ∈ [xij1, xi+1,j1], x2 ∈
[xij2, xi,j+12], x

′
1 ∈ [xi′j′1, xi′+1,j′1], x

′
2 ∈ [xi′j′2, xi′,j′+12]. Similarly, we have

||B−1xi,j+1 − xi′,j′+1||22≤ ||B−1xi,j+1 −B−1x||22+||xi′,j′+1 −B−1x||22≤
√
2h+

√
2h = 2

√
2h. (21)

From (17) and (21) we can derive:

|S
[
π̃E
B

]
(F ) (x,A)− πE

B [S (F )] (x,A) |= |e(B−1xîj , B
−1A)− e(xĩj , B

−1A)|≤ 2
√
2Gh. (22)

□

III. PROOF OF EQUIVARIANCE ERROR FOR UPSAMPLING OPERATORS

A. Proof of equivariance error for nearest neighbor upsampling

Theorem 3. Assume that a feature map F ∈ Rn×n×t is discretized from the smooth function e : R2 × S → R, |S|= t, the
mesh size is h, N(·) is the nearest neighbor upsampling operator. If for any A,B ∈ S, x ∈ R2, the following conditions are
satisfied:

∥ ∇e(x,A) ∥≤ G, (23)

then the following results are satisfied:

|[N
[
π̃E
B

]
(F )] (x,A)− πE

B [N (F )] (x,A) |≤
√
2Gh. (24)

Proof. From the above definition we can deduce as follows:

[N
[
π̃E
B

]
(F )] (x,A) = [N

(
π̃E
B (F )

)
] (x,A) =

(
π̃E
B(F )

)A
îĵ
= e(B−1xîĵ , B

−1A), (25)
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where (̂i, ĵ) = argminij ||xij − x||22.

πE
B [N (F )] (x,A) = [N(F )](B−1x,B−1A) = FB−1A

ĩj̃
= e(xĩj̃ , B

−1A), (26)

where (̃i, j̃) = argminij ||xij −B−1x||22.
From (25) and (26), by using the Lagrange Mean Value Theorem, we can derive

|[N
[
π̃E
B

]
(F )] (x,A)− πE

B [N (F )] (x,A) |= |e(B−1xîĵ , B
−1A)− e(xĩj̃ , B

−1A)|≤ G||B−1xîĵ − xĩj̃ ||
2
2. (27)

By the definition of xîĵ , we have ∥ xîĵ − x ∥22≤
√
2
2 h. Since B is an orthogonal matrix,

||B−1xîĵ −B−1x||22≤
√
2

2
h. (28)

By the definition of xĩj̃ ,

||xĩj̃ −B−1x||22≤
√
2

2
h. (29)

From (28) and (29) we can derive

||B−1xîĵ − xĩj̃ ||
2
2≤ ||B−1xîĵ −B−1x||22+||xĩj̃ −B−1x||22≤

√
2

2
h+

√
2

2
h =

√
2h. (30)

Combining (27) and (30), we can get

|[N
[
π̃E
B

]
(F )] (x,A)− πE

B [N (F )] (x,A) |≤
√
2Gh. (31)

□

B. Proof of equivariance error for bilinear upsampling

Theorem 4. Assume that a feature map F ∈ Rn×n×t is discretized from the smooth function e : R2 × S → R, |S|= t, the
mesh size is h, B(·) is the bilinear upsampling operator. If for any A,C ∈ S, x ∈ R2, the following conditions are satisfied:

∥ ∇e(x,A) ∥≤ G, (32)

then the following results are satisfied:

|[B
[
π̃E
C

]
(F )] (x,A)− πE

C [B (F )] (x,A) |≤ 2(
√
2 + 1)Gh. (33)

Proof. From the above definition we can deduce as follows:

[B
[
π̃E
C

]
(F )] (x,A) = [B

(
π̃E
C (F )

)
] (x,A)

= λ1(π̃
E
C (F ))Ai,j + λ2(π̃

E
C (F ))Ai+1,j + λ3(π̃

E
C (F ))Ai,j+1 + λ4(π̃

E
C (F ))Ai+1,j+1 (34)

= λ1e(C
−1xij , C

−1A) + λ2e(C
−1xi+1,j , C

−1A) + λ3e(C
−1xi,j+1, C

−1A) + λ4e(C
−1xi+1,j+1, C

−1A),

πE
C [B (F )] (x,A) = [B(F )](C−1x,C−1A)

= λ′
1F

C−1A
i′j′ + λ′

2F
C−1A
i′+1,j′ + λ′

3F
C−1A
i′,j′+1 + λ′

4F
C−1A
i′+1,j′+1 (35)

= λ′
1e(xi′j′ , C

−1A) + λ′
2e(xi′+1,j′ , C

−1A) + λ′
3e(xi′,j′+1, C

−1A) + λ′
4e(xi′+1,j′+1, C

−1A),

where x = [x1, x2]
T ∈ R2, C−1x = [x′

1, x
′
2]

T ∈ R2 denotes the spatial coordinates, and x1 ∈ [xij1, xi+1,j1], x2 ∈
[xij2, xi,j+12], x′

1 ∈ [xi′j′1, xi′+1,j′1], x′
2 ∈ [xi′j′2, xi′,j′+12]. We note that λ1 + λ2 + λ3 + λ4 = 1, and they’re both

positive. We can transform (34) as follows:

[B
[
π̃E
C

]
(F )] (x,A) = λ1e(C

−1xij , C
−1A) + λ2e(C

−1xi+1,j , C
−1A) + λ3e(C

−1xi,j+1, C
−1A) + λ4e(C

−1xi+1,j+1, C
−1A)

− (λ1 + λ2 + λ3 + λ4)e(C
−1xij , C

−1A) + e(C−1xij , C
−1A)

= e(C−1xij , C
−1A) + λ2[e(C

−1xi+1,j , C
−1A)− e(C−1xij , C

−1A)]

+ λ3[e(C
−1xi,j+1, C

−1A)− e(C−1xij , C
−1A)] + λ4[e(C

−1xi+1,j+1, C
−1A)− e(C−1xij , C

−1A)].
(36)
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We can transform (35) in the same way.

πE
C [B (F )] (x,A) = λ′

1e(xi′j′ , C
−1A) + λ′

2e(xi′+1,j′ , C
−1A) + λ′

3e(xi′,j′+1, C
−1A) + λ′

4e(xi′+1,j′+1, C
−1A)

− (λ′
1 + λ′

2 + λ′
3 + λ′

4)e(xi′j′ , C
−1A) + e(xi′j′ , C

−1A)

= e(xi′j′ , C
−1A) + λ′

2[e(xi′+1,j′ , C
−1A)− e(xi′j′ , C

−1A)]

+ λ′
3[e(xi′,j′+1, C

−1A)− e(xi′j′ , C
−1A)] + λ′

4[e(xi′+1,j′+1, C
−1A)− e(xi′j′ , C

−1A)]. (37)

We can find that ||C−1xi+1,j − C−1xij ||22≤ h, it still holds true for other points. So we have

λ2|e(C−1xi+1,j , C
−1A)− e(C−1xij , C

−1A)|+ λ3|e(C−1xi,j+1, C
−1A)− e(C−1xij , C

−1A)|
+ λ4|e(C−1xi+1,j+1, C

−1A)− e(C−1xij , C
−1A)|≤ Gh, (38)

λ′
2|e(xi′+1,j′ , C

−1A)− e(xi′j′ , C
−1A)|+ λ′

3|e(xi′,j′+1, C
−1A)− e(xi′j′ , C

−1A)|
+ λ′

4|e(xi′+1,j′+1, C
−1A)− e(xi′j′ , C

−1A)|≤ Gh, (39)

||C−1xij − xi′j′ ||22≤ ||C−1xij − C−1x||22+||xi′j′ − C−1x||22≤
√
2h+

√
2h = 2

√
2h. (40)

Then we have

|[B
[
π̃E
C

]
(F )] (x,A)− πE

C [B (F )] (x,A) | ≤ |e(C−1xij , C
−1A)− e(xi′j′ , C

−1A)|+2Gh

≤ 2(
√
2 + 1)Gh. (41)

Finally, we have
|[B
[
π̃E
C

]
(F )] (x,A)− πE

C [B (F )] (x,A) |≤ 2(
√
2 + 1)Gh. (42)

□

IV. PROOF OF EQUIVARIANCE ERROR OF COMPLETE U-NET NETWORK

In this section, we aim to analyze the rotational equivariance error of the complete U-Net network. Lemma 1., using bilinear
upsampling as an example, provides a theoretical guarantee that our interpolation method does not increase the gradient values
of the feature maps. Lemma 2. establishes the range of function values, derivative values, and second-order derivatives for each
feature map layer in a rotationally equivariant network. Lemma 3. provides the rotational equivariance error for a single-layer,
single-channel convolutional layer. Theorem 5. presents the rotational equivariance error of the complete U-Net network under
discrete angles.
Lemma 1. Assume that a feature map F ∈ Rn×n×t is discretized from the smooth function e : R2 × S → R, |S|= t, the
mesh size is h, B(·) is the bilinear upsampling operator. If for any A ∈ S, x ∈ R2, the following conditions are satisfied:

∥ ∇e(x,A) ∥≤ G, (43)

then we have:
[B (F )] (x,A) ≤ G. (44)

Proof. Based on Rolle’s Theorem: let a function f be continuous on [a, b] and differentiable on (a, b). If f(a) = f(b),
then there exists a point ξ ∈ (a, b) such that f ′(ξ) = 0. At the grid points, we have [B (F )] (x,A) = e(x,A). Let F (x) =
[B (F )] (x,A)−e(x,A), x1, x2 are grid points and ξ is a point within the range of the grid points. Then F (x) satisfies Rolle’s
Theorem and can be expressed as:

F ′(ξ) = ∇[B (F )] (ξ, A)−∇e(ξ, A) = 0. (45)

Therefore, we can obtain ∇[B (F )] (x,A) ⊂ ∇e(x,A), i.e. [B (F )] (x,A) ≤ G. □

Lemma 2. (Fu. 2023 [3]) For an image X with size h× w × c, and a N-layer rotation equivariant CNN network CNNeq(·),
whose channel number of the ith layer is ni, rotation equivariant subgroup is S ⩽ O(2), |S|= t, and activation function is set
as ReLU. If the latent continuous function of the cth channel of I denoted as rc : R2 → R, and the latent continuous function
of any convolution filters in the ith layer denoted as ϕi : R2 → R, where i ∈ {1, · · · , N}, c ∈ {1, · · · , C}, for any x ∈ R2, the
following conditions are satisfied:

|rc(x)|≤ F0, ∥∇rc(x)∥≤ G0, ∥∇2rc(x)∥≤ H0,

|φi(x)|≤ Fi, ∥∇φi(x)∥≤ Gi, ∥∇2φi(x)∥≤ Hi,

∀∥x∥≥ (p+ 1)h/2, φi(x) = 0,

(46)
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where p is the filter size, h is the mesh size, and ∇ and ∇2 denote the operators of gradient and Hessian matrix, respectively.
Denote

eid(x,B) =

{ ∑
c,δ∈Λ φ1

cd(B
−1δ)rc(x− δ) if i = 1,∑

c,A,δ∈Λ φi
Acd(B

−1δ)ei−1
c (x− δ,BA) if i ̸= 1, N.

(47)

where Λ =
{((

a− p+1
2

)
h,
(
b− p+1

2

)
h
)T |a, b = 1, 2, · · · , p

}
, φ1

cd and φl
Acd are filters in the first layer and other layers

respectively. Then,for ∀B ∈ S the following results are satisfed:∣∣eid(x,B)
∣∣ ≤ F0Fi,∣∣∇eid(x,B)

∣∣ ≤ ( i∑
m=1

GmF0

Fm
+G0

)
Fi,

∣∣∇2eid(x,B)
∣∣ ≤ ( i∑

m=1

HmF0

Fm
+ 2

i∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+ 2

i∑
m=1

GmG0

Fm
+H0

)
Fi,

(48)

where Fi =
∏i

k=1 nk−1p
2Fk,∀i = 1, 2, · · · , N − 1. □

Lemma 3. (Xie. 2023 [4]) Assume that an image X ∈ Rn×n is discretized from the smooth function r : R2 → R, a feature
map F ∈ Rn×n×t is discretized from the smooth function e : R2 × S → R, |S|= t, and filters Ψ̃ , Φ̃ and Υ̃ are gencrated
from φin, φout and φA, ∀A ∈ S, respectively. If for any A ∈ S, x ∈ R2, the following conditions are satisfied:

|r(x)|, |e(x,A)|≤ F1,

∥∇r(x)∥, ∥∇e(x,A)∥≤ G1,

∥∇2r(x)∥, ∥∇2e(x,A)∥≤ H1,

|φin(x)|, |φA(x)|, |φout(x)|≤ F2,

∥∇φin(x)∥, ∥∇φA(x)∥, ∥∇φout(x)∥≤ G2,

∥∇2φin(x)∥, ∥∇2φA(x)∥, ∥∇2φout(x)∥≤ H2,

∀∥x∥≥ (p+ 1)h/2, φin(x), φA(x), φout(x) = 0,

(49)

where p is the filter size, h is the mesh size, and ∇ and ∇2 denote the operators of gradient and Hessian matrix, respectively,
then for any θk = {2kπ/t | k = 1, 2, · · · , t}, the following results are satisfied:∣∣∣Ψ̂ [π̃θk ] (X)− π̃θk [Ψ̂](X)

∣∣∣ ≤ C

2
(p+ 1)2h2,∣∣∣Φ̂ [π̃θk ] (F )− π̃θk [Φ̂](F )

∣∣∣ ≤ C

2
(p+ 1)2h2t,∣∣∣Υ̂ [π̃θk ] (F )− π̃θk [Υ̂](F )

∣∣∣ ≤ C

2
(p+ 1)2h2t,

(50)

where C = F1H2 + F2H1 + 2G1G2 and ∥·∥∞ represents the infinity norm. □

To obtain the rotational equivariance error of the complete U-Net network under discrete angles, as shown in fig. 1, we
decompose the network into multiple upsampling and downsampling blocks. Each downsampling block (DB) consists of one
E-Conv layer (Equivariant Convolution) and a downsampling operator, while each upsampling block (UB) is composed of an
upsampling operator and two E-Conv layers, we provide the equivariant error for each block. These are denoted as Lemma
4. and Lemma 5. Note that the mesh size of upsampling and downsampling is different, we define the mesh size of the
original picture to be h, the mesh size after a ×2 downsampling is 2h, and so on.
Lemma 4.(DB Equivariant Error) We take an equivariant convolution layer Φ(·) and a downsampling layer D(·) as a
Downsampling Block (DB), Φ(·) and D(·) are both multi-channel operators, we consider the ith DB module DBi, we
used stride downsampling operator for demonstration. If the latent continuous function of the cth channel of I denoted as
rc : R2 → R, and the latent continuous function of any convolution filters in the ith layer denoted as ϕi : R2 → R, where
l ∈ {1, · · · , L}, c ∈ {1, · · · , C}, for any x ∈ R2, the following conditions are satisfied:

|rc(x)|≤ F0, ∥∇rc(x)∥≤ G0, ∥∇2rc(x)∥≤ H0,

|φi(x)|≤ Fi, ∥∇φi(x)∥≤ Gi, ∥∇2φi(x)∥≤ Hi,

∀∥x∥≥ (p+ 1)h/2, φi(x) = 0,

(51)

where p is the filter size, h is the mesh size of the original picture, and ∇ and ∇2 denote the operators of gradient and Hessian
matrix, respectively. In front of this module there are i convolutions (i − 1 intermediate layers and 1 input layer) and i − 1
downsampling modules, and we give the rotation equivariant error of the DBi, the following result is satisfied:
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Fig. 1. The network architecture of the equivariant N2N method. The network can be divided into multiple upsampling and downsampling blocks. Each
downsampling block (DB) consists of one E-Conv layer and a downsampling operator, while each upsampling block (UB) is composed of an upsampling
operator and two E-Conv layers.

∣∣∣ ˆDBi

[
π̃E
θ

]
(F )(x)− πE

θ

[
ˆDBi(F )

]
(x)
∣∣∣ ≤ Qi1h+Qi2h

2, (52)

where Qi1 =
(∑i+1

m=1
GmF0

Fm
+G0

)
Fi+12

i− 1
2 , Qi2 =

(∑i+1
m=1

GmF0

Fm
+G0

)
Fi+1ni

Ci+1

2 (p+ 1)222i−2.

Proof.∣∣∣ ˆDBi

[
π̃E
θ

]
(F )(x)− πE

θ

[
ˆDBi(F )

]
(x)
∣∣∣ = ∣∣∣D (Φ̂i+1

[
π̃E
θ

]
(F )
)
(x)− πE

θ

[
D
[
Φ̂i+1

]
(F )
]
(x)
∣∣∣

≤
∣∣∣D (Φ̂i+1

[
π̃E
θ

]
(F )
)
(x)−D

(
π̃E
θ

(
Φ̂i+1

)
(F )
)
(x)
∣∣∣+ ∣∣∣D (π̃E

θ

(
Φ̂i+1

)
(F )
)
(x)− πE

θ

[
D
[
Φ̂i+1

]
(F )
]
(x)
∣∣∣ . (53)

By Lemma 2, we know that the derivative of the feature map at the ith layer satisfies:∣∣∇eid(x,B)
∣∣ ≤ ( i∑

m=1

GmF0

Fm
+G0

)
Fi, (54)

so the derivative of layer i+1 is ∣∣∇ei+1
d (x,B)

∣∣ ≤ ( i+1∑
m=1

GmF0

Fm
+G0

)
Fi+1. (55)

For the second absolute value, since there are i-1 downsampling modules before it, the meshsize has become 2i−1h. We define
the meshsize of the original image as h, and we use the derivative of the i+ 1th layer, then we have:∣∣∣D (π̃E

θ

(
Φ̂i+1

)
(F )
)
(x)− πE

θ

[
D
[
Φ̂i+1

]
(F )
]
(x)
∣∣∣ ≤ 2

√
2

(
i+1∑
m=1

GmF0

Fm
+G0

)
Fi+12

i−1h = 2i+
1
2

(
i+1∑
m=1

GmF0

Fm
+G0

)
Fi+1h.

For the first absolute value, according to Lemma 3, we have:∣∣∣D (Φ̂i+1

[
π̃E
θ

]
(F )
)
(x)−D

(
π̃E
θ

(
Φ̂i+1

)
(F )
)
(x)
∣∣∣ = ∣∣∣D (Φ̂i+1

[
π̃E
θ

]
(F )(x)− π̃E

θ

[
Φ̂i+1

]
(F )(x)

)∣∣∣
≤

(
i+1∑
m=1

GmF0

Fm
+G0

)
Fi+1ni

Ci+1

2
(p+ 1)2(2i−1h)2.

(56)

Then we have: ∣∣∣ ˆDBi

[
π̃E
θ

]
(F )(x)− πE

θ

[
ˆDBi(F )

]
(x)
∣∣∣ ≤ Qi1h+Qi2h

2, (57)
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where Qi1 =
(∑i+1

m=1
GmF0

Fm
+G0

)
Fi+12

i+ 1
2 , Qi2 =

(∑i+1
m=1

GmF0

Fm
+G0

)
Fi+1ni

Ci+1

2 (p+ 1)222i−2. □

Lemma 5.(UB Equivariant Error) We take an upsampling layer U(·) and two equivariant convolution layers Φi(·),Φi+1(·)
as a Upsampling Block (UB), all operators are multi-channel, we consider the ith UB module UBi, we used nearest neighbor
upsampling operator for demonstration. If the latent continuous function of the cth channel of I denoted as rc : R2 → R, and
the latent continuous function of any convolution filters in the ith layer denoted as ϕi : R2 → R, where l ∈ {1, · · · , L}, c ∈
{1, · · · , C}, for any x ∈ R2, the following conditions are satisfied:

|rc(x)|≤ F0, ∥∇rc(x)∥≤ G0, ∥∇2rc(x)∥≤ H0,

|φi(x)|≤ Fi, ∥∇φi(x)∥≤ Gi, ∥∇2φi(x)∥≤ Hi,

∀∥x∥≥ (p+ 1)h/2, φi(x) = 0,

(58)

where p is the filter size, h is the mesh size of the original picture, and ∇ and ∇2 denote the operators of gradient and Hessian
matrix, respectively. In front of this module there are m+ 2 + 2i− 2 = m+ 2i convolutions, m downsampling modules and
i− 1 upsampling modules, and we give the rotation equivariant error of the UBi, the following result is satisfied:∣∣∣ ˆUBi

[
π̃E
θ

]
(F )(x)− π̃E

θ

[
ˆUBi(F )

]
(x)
∣∣∣ ≤ Ki1h+Ki2h

2, (59)

where Ki1 = nm+2i+1p
2Fm+2i+2nm+2ip

2Fm+2i+1

√
2
(∑m+2i

j=1
GjF0

Fj
+G0

)
2m−i+1,

Ki2 = nm+2i+1p
2Fm+2i+2nm+2i

Cm+2i+1

2 (p+ 1)222m−2i + nm+2i+1
Cm+2i+2

2 (p+ 1)222m−2i.

Proof.∣∣∣ ˆUBi

[
π̃E
θ

]
(F )(x)− π̃E

θ

[
ˆUBi(F )

]
(x)
∣∣∣ = ∣∣∣Φ̂m+2i+2

(
Φ̂m+2i+1U

[
π̃E
θ

]
(F )
)
(x)− π̃E

θ

[
Φ̂m+2i+2Φ̂m+2i+1 [U ] (F )

]
(x)
∣∣∣

≤
∣∣∣Φ̂m+2i+2

(
Φ̂m+2i+1U

[
π̃E
θ

]
(F )
)
(x)− Φ̂m+2i+2

(
Φ̂m+2i+1π

E
θ [U ] (F )

)
(x)
∣∣∣

+
∣∣∣Φ̂m+2i+2

(
Φ̂m+2i+1π

E
θ [U ] (F )

)
(x)− Φ̂m+2i+2

(
π̃E
θ Φ̂m+2i+1 [U ] (F )

)
(x)
∣∣∣

+
∣∣∣Φ̂m+2i+2

(
π̃E
θ Φ̂m+2i+1 [U ] (F )

)
(x)− π̃E

θ Φ̂m+2i+2

(
Φ̂m+2i+1 [U ] (F )

)
(x)
∣∣∣ .

We assume there are m DB modules, in the instance m is equal to 5, but for generality, we denote it as m. For the first
absolute value, the derivative function is from the (m+2i)th layer, which has undergone m downsampling and i−1 upsampling
operations. Therefore, h has been amplified by a factor of m− i+ 1, and we have:∣∣∣Φ̂m+2i+2

(
Φ̂m+2i+1U

[
π̃E
θ

]
(F )
)
(x)− Φ̂m+2i+2

(
Φ̂m+2i+1π

E
θ [U ] (F )

)
(x)
∣∣∣

≤ nm+2i+1p
2Fm+2i+2nm+2ip

2Fm+2i+1

√
2

m+2i∑
j=1

GjF0

Fj
+G0

 2m−i+1h.
(60)

For the second absolute value, applying the mean value theorem for derivatives, this concerns the rotation before and after the
(m+ 2i+ 1)th layer, which has undergone m downsampling and i upsampling operations, and we have:∣∣∣Φ̂m+2i+2

(
Φ̂m+2i+1π

E
θ [U ] (F )

)
(x)− Φ̂m+2i+2

(
π̃E
θ Φ̂m+2i+1 [U ] (F )

)
(x)
∣∣∣

≤ nm+2i+1p
2Fm+2i+2nm+2i

Cm+2i+1

2
(p+ 1)2(2m−ih)2.

(61)

For the third absolute value, we have:∣∣∣Φ̂m+2i+2

(
π̃E
θ Φ̂m+2i+1 [U ] (F )

)
(x)− π̃E

θ Φ̂m+2i+2

(
Φ̂m+2i+1 [U ] (F )

)
(x)
∣∣∣ ≤ nm+2i+1

Cm+2i+2

2
(p+ 1)2(2m−ih)2. (62)

Adding the three absolute values together, we obtain the final result:∣∣∣ ˆUBi

[
π̃E
θ

]
(F )(x)− π̃E

θ

[
ˆUBi(F )

]
(x)
∣∣∣ ≤ Ki1h+Ki2h

2, (63)

where Ki1 = nm+2i+1p
2Fm+2i+2nm+2ip

2Fm+2i+1

√
2
(∑m+2i

j=1
GjF0

Fj
+G0

)
2m−i+1,

Ki2 = nm+2i+1p
2Fm+2i+2nm+2i

Cm+2i+1

2 (p+ 1)222m−2i + nm+2i+1
Cm+2i+2

2 (p+ 1)222m−2i. □

Using the provided Lemma 4 and Lemma 5, we further derive the rotational equivariance error of the complete U-Net
network under fixed discrete angles, which is presented as Theorem 5.
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Theorem 5. For an image X with size h×w×n0, and a rotation equivariant U-Net network UNeteq(·), whose channel number
of the ith layer is ni, rotation equivariant subgroup is S ⩽ O(2), |S|= t , and activation function is set as ReLU. If the latent
continuous function of the cth channel of I denoted as rc : R2 → R, and the latent continuous function of any convolution
filters in the ith layer denoted as ϕi : R2 → R, Ψ̂, Φ̂, and Υ̂ represent the convolutional layers in the input, middle, and output
stages, respectively. We consider m DBs and m UBs, so the network has a total of 3m+ 3 convolutional layers. We define:

UNeteq(·) = Υ̂
[
ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · · D̂B1

[
Ψ̂
]]

· · ·
]]

(·), (64)

the following conditions are satisfied:

|rc(x)|≤ F0, ∥∇xrc(x)∥≤ G0, ∥∇2
xrc(x)∥≤ H0,

|ϕl(x)|≤ Fl, ∥∇xϕ
l(x)∥≤ Gl, ∥∇2

xϕ
l(x)∥≤ Hl,

∀∥x∥≥ (p+ 1)h/2, ϕl(x) = 0,

(65)

where p is the filter size, h is the mesh size, θk = 2kπ
t , k = 1, 2, · · · , t and ∇xand∇2

x denote the operators of gradient and
Hessian matrix, respectively. We have∣∣UNeteq

[
π̃R
θk

]
(X)− π̃R

θk
[UNeteq] (X)

∣∣ ≤ R1h+R2h
2, (66)

where R1 =
∑m

i=1

(∏3m+3
k=i+2 nk−1p

2Fk

)
Qi1 +

∑m
i=1

(∏3m+3
k=m+2i+3 nk−1p

2Fk

)
Ki1, R2 =

(∏3m+3
k=2 nk−1p

2Fk

)
n0

C1

2 (p +

1)2+
∑m

i=1

(∏3m+3
k=i+2 nk−1p

2Fk

)
Qi2+

(∏3m+3
k=m+3 nk−1p

2Fk

)
nm+1

Cm+2

2 (p+1)2(22m)+
∑m

i=1

(∏3m+3
k=m+2i+3 nk−1p

2Fk

)
Ki2+

n3m+2
C3m+3

2 (p+ 1)2.

Proof. We assume there are m upsampling modules and m subsampling modules.

∣∣UNeteq [π̃R
θk

]
(X)− π̃R

θk
[UNeteq] (X)

∣∣
=
∣∣∣Υ̂ [ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · · D̂B1

[
Ψ̂
[
π̃R
θk

]]]]
· · ·
]
(X)− π̃R

θk

[
Υ̂
[
ÛBm . . . ÛB1

[
Φ̂
[
D̂Bm · · · D̂B1[Ψ̂] · · ·

]]]]
(X)

∣∣∣
≤
∣∣∣Υ̂ [ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · · D̂B1

[
Ψ̂
[
π̃R
θk

]]]]
· · ·
]
(X)− Υ̂

[
ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · · D̂B1

[
π̃E
θk

[
Ψ̂
]]]]

· · ·
]
(X)

∣∣∣
+
∣∣∣Υ̂ [ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · · D̂B1

[
π̃E
θk

[
Ψ̂
]]]]

· · ·
]
(X)− Υ̂

[
ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · ·

[
πE
θk
D̂B1

[
Ψ̂
]]]]

· · ·
]
(X)

∣∣∣
+ · · ·

+
∣∣∣Υ̂ [ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · · D̂Bi

[
πE
θk

· · · D̂B1

[
Ψ̂
]]]]]

(X)− Υ̂
[
ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · ·

[
πE
θk
D̂Bi · · · D̂B1

[
Ψ̂
]]]]]

(X)
∣∣∣

+ · · ·

+
∣∣∣Υ̂ [ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm

[
πE
θk

· · · D̂Bi · · · D̂B1

[
Ψ̂
]]]]]

(X)− Υ̂
[
ÛBm · · · ÛB1

[
Φ̂πE

θk

[
D̂Bm · · ·

[
D̂Bi · · · D̂B1

[
Ψ̂
]]]]]

(X)
∣∣∣

+
∣∣∣Υ̂ [ÛBm · · · ÛB1

[
Φ̂πE

θk

[
D̂Bm

[
· · · D̂Bi · · · D̂B1

[
Ψ̂
]]]]]

(X)− Υ̂
[
ÛBm · · · ÛB1

[
π̃E
θk
Φ̂
[
D̂Bm · · ·

[
D̂Bi · · · D̂B1

[
Ψ̂
]]]]]

(X)
∣∣∣

+
∣∣∣Υ̂ [ÛBm · · · ÛB1π̃

E
θk

[
Φ̂
[
D̂Bm

[
· · · D̂Bi · · · D̂B1

[
Ψ̂
]]]]]

(X)− Υ̂
[
ÛBm · · · π̃E

θk
ÛB1

[
Φ̂
[
D̂Bm · · ·

[
D̂Bi · · · D̂B1

[
Ψ̂
]]]]]

(X)
∣∣∣

+ · · ·

+
∣∣∣Υ̂ [ÛBm · · · ÛBiπ̃

E
θk

· · · ÛB1

[
Φ̂
[
D̂Bm

[
· · · D̂B1

[
Ψ̂
]]]]]

(X)− Υ̂
[
ÛBm · · · π̃E

θk
ÛBi · · · ÛB1

[
Φ̂
[
D̂Bm

[
· · · D̂B1

[
Ψ̂
]]]]]

(X)
∣∣∣

+ · · ·

+
∣∣∣Υ̂ [ÛBmπ̃E

θk
· · · ÛBi · · · ÛB1

[
Φ̂
[
D̂Bm

[
· · · D̂B1

[
Ψ̂
]]]]]

(X)− Υ̂
[
π̃E
θk
ÛBm · · · ÛBi · · · ÛB1

[
Φ̂
[
D̂Bm

[
· · · D̂B1

[
Ψ̂
]]]]]

(X)
∣∣∣

+
∣∣∣Υ̂π̃E

θk

[
ÛBm · · · ÛBi · · · ÛB1

[
Φ̂
[
D̂Bm

[
· · · D̂B1

[
Ψ̂
]]]]]

(X)− π̃R
θk
Υ̂
[
ÛBm · · · ÛBi · · · ÛB1

[
Φ̂
[
D̂Bm

[
· · · D̂B1

[
Ψ̂
]]]]]

(X)
∣∣∣ .

There are a total of 3m + 3 convolutions. Following the input convolutional layer, there are m + 1 + 2m + 1 = 3m + 2
convolutional layers. We do not need to consider the impact of upsampling and downsampling operators on the feature maps,
as demonstrated in Lemma 1. The upsampling and downsampling operators perform interpolation between grid points without
increasing the gradient of the feature maps. However, we must consider the mesh size change of h. We can then derive the
error of the first layer.

For the rotation equivariant error of the input convolutional layer Ψ̂(·).
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∣∣∣Υ̂ [ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · · D̂B1

[
Ψ̂
[
π̃R
θk

]]]]
· · ·
]
(X)− Υ̂

[
ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · · D̂B1

[
π̃E
θk

[
Ψ̂
]]]]

· · ·
]
(X)

∣∣∣
≤

(
3m+3∏
k=2

nk−1p
2Fk

)
n0

C1

2
(p+ 1)2h2,

where C1 = H1F0 + F1H0 + 2G1G0.
For the rotation equivariant error of DBi, there are i convolutional layers and i − 1 downsampling layers. There are

m− i+1+2m+1 = 3m− i+2 convolutional layers, from the (i+2)th convolutional layer to the (3m+3)th convolutional
layer.∣∣∣Υ̂ [ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · · D̂Bi

[
πE
θk

· · · D̂B1

[
Ψ̂
]]]]]

(X)− Υ̂
[
ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · ·

[
πE
θk
D̂Bi · · · D̂B1

[
Ψ̂
]]]]]

(X)
∣∣∣

≤ n3m+2p
2F3m+3 · · ·ni+1p

2Fi+2

(
Qi1h+Qi2h

2
)
=

(
3m+3∏
k=i+2

nk−1p
2Fk

)(
Qi1h+Qi2h

2
)
,

and we also need to sum i from 1 to m. i is the index of the DB.
For the rotation equivariant error of the middle convolutional layer Φ̂(·),∣∣∣Υ̂ [ÛBm · · · ÛB1

[
Φ̂πE

θk

[
D̂Bm

[
· · · D̂Bi · · · D̂B1

[
Ψ̂
]]]]]

(X)− Υ̂
[
ÛBm · · · ÛB1

[
π̃E
θk
Φ̂
[
D̂Bm · · ·

[
D̂Bi · · · D̂B1

[
Ψ̂
]]]]]

(X)
∣∣∣

≤ n3m+2p
2F3m+3 · · ·nm+2p

2Fm+3nm+1
Cm+2

2
(p+ 1)2(2mh)2 =

(
3m+3∏
k=m+3

nk−1p
2Fk

)
nm+1

Cm+2

2
(p+ 1)2(2mh)2.

For the rotation equivariant error of UBi, there are 2m−2i+1 convolutions following it, ranging from the m+2+2i+1 =
m+ 2i+ 3 layer to the 3m+ 3 layer.∣∣∣Υ̂ [ÛBm · · · ÛBiπ̃

E
θk

· · · ÛB1

[
Φ̂
[
D̂Bm

[
· · · D̂B1

[
Ψ̂
]]]]]

(X)− Υ̂
[
ÛBm · · · π̃E

θk
ÛBi · · · ÛB1

[
Φ̂
[
D̂Bm

[
· · · D̂B1

[
Ψ̂
]]]]]

(X)
∣∣∣

≤ n3m+2p
2F3m+3 · · ·nm+2i+2p

2Fm+2i+3

(
Ki1h+Ki2h

2
)
=

(
3m+3∏

k=m+2i+3

nk−1p
2Fk

)(
Ki1h+Ki2h

2
)
,

and we also need to sum i from 1 to m. i is the index of UB.
For the rotation equivariant error of the output convolutional layer Υ̂(·),∣∣∣Υ̂π̃E

θk

[
ÛBm · · · ÛBi · · · ÛB1

[
Φ̂
[
D̂Bm

[
· · · D̂B1

[
Ψ̂
]]]]]

(X)− π̃R
θk
Υ̂
[
ÛBm · · · ÛBi · · · ÛB1

[
Φ̂
[
D̂Bm

[
· · · D̂B1

[
Ψ̂
]]]]]

(X)
∣∣∣

≤ n3m+2
C3m+3

2
(p+ 1)2h2.

In the above derivation, by substituting Lemma 2, we can obtain the expansion of Ci, where

Ci = Fi−1Fi

(
HiF0

Fi
+

i−1∑
m=1

HmF0

Fm
+ 2

i−1∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+ 2

i−1∑
m=1

GmG0

Fm
+H0 +

i−1∑
m=1

2
GiGmF0

FiFm
+ 2

GiG0

Fi

)
. (67)

To make it appear more concise and clear, we use Ci as the expression without expanding it.
Finally we can deduce: ∣∣UNeteq

[
π̃R
θk

]
(X)− π̃R

θk
[UNeteq] (X)

∣∣ ≤ R1h+R2h
2, (68)

where R1 =
∑m

i=1

(∏3m+3
k=i+2 nk−1p

2Fk

)
Qi1 +

∑m
i=1

(∏3m+3
k=m+2i+3 nk−1p

2Fk

)
Ki1, R2 =

(∏3m+3
k=2 nk−1p

2Fk

)
n0

C1

2 (p +

1)2+
∑m

i=1

(∏3m+3
k=i+2 nk−1p

2Fk

)
Qi2+

(∏3m+3
k=m+3 nk−1p

2Fk

)
nm+1

Cm+2

2 (p+1)2(22m)+
∑m

i=1

(∏3m+3
k=m+2i+3 nk−1p

2Fk

)
Ki2+

n3m+2
C3m+3

2 (p+ 1)2. □

Next, we will derive the rotation equivariant error of the entire U-Net network under any angle. We decompose the equation
into the following form (69). The error of the second term has already been provided in Theorem 5. For the errors of the first
and third terms, since upsampling and downsampling operations only affect the size of h, we can similarly use the lemma
from [3]. For clearer presentation, we write them as Lemma 6 and Lemma 7:
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∣∣UNeteq [π̃R
θ

]
(X)− π̃R

θ [UNeteq] (X)
∣∣

≤
∣∣UNeteq [π̃R

θ

]
(X)−UNeteq

[
π̃R
θk

]
(X)

∣∣︸ ︷︷ ︸
⟨1⟩

+
∣∣UNeteq

[
π̃R
θk

]
(X)− π̃R

θk
[UNeteq] (X)

∣∣︸ ︷︷ ︸
⟨2⟩

+
∣∣π̃R

θk
[UNeteq] (X)− π̃R

θ [UNeteq] (X)
∣∣︸ ︷︷ ︸

⟨3⟩

,

(69)

Lemma 6. (Fu. 2023 [3]) For an image X with size H × W × n0, and a N -layer rotation equivariant network CNNeq(·),
whose channel number of the ith layer is ni, rotation equivariant subgroup is S ⩽ O(2), |S|= t, and activation function is set
as ReLU. If the latent continuous function of the cth channel of X denoted as rc : R2 → R, and the latent continuous function
of any convolution filters in the ith layer denoted as φi : R2 → R, where i ∈ {1, · · · , N}, c ∈ {1, · · · , n0}, for any x ∈ R2,
the following conditions are satisfied:

|rc(x)| ≤ F0, ∥∇rc(x)∥ ≤ G0,
∥∥∇2rc(x)

∥∥ ≤ H0,∣∣φi(x)
∣∣ ≤ Fi,

∥∥∇φi(x)
∥∥ ≤ Gi,

∥∥∇2φi(x)
∥∥ ≤ Hi,

∀∥x∥≥ (p+ 1)h/2, φi(x) = 0,

where p is the filter size, h is the mesh size, and ∇ and ∇2 denote the operators of gradient and Hessian matrix, respectively. For
an arbitrary θ ∈ [0, 2π], Aθ denotes the rotation matrix. If F (θ) = CNNeq

[
π̃R
θ

]
(X) = Υ̂

[
Φ̂N−1 · · · Φ̂i+1

[
Φ̂i · · · Φ̂2

[
Ψ̂
[
π̃R
θ

]]
· · ·
]]

(X),
then the following result is satisfied:

|F ′(θ)| ≤ F(max{H,W}+N(p+ 1))hG0,

where F =
∏N

k=1 nk−1p
2Fk.

Lemma 7. (Fu. 2023 [3]) Under the same conditions with Lemma 6.
If F (θ) = π̃R

θ [CNNeq] (X) = π̃R
θ

[
Υ̂
[
Φ̂N−1 · · · Φ̂i+1

[
Φ̂i · · · Φ̂2[Ψ̂] · · ·

]]]
(X), and then the following result is satisfied:

|F ′(θ)| ≤ F max{H,W}hG0,

where F =
∏N

k=1 nk−1p
2Fk.

Based on the above two lemmas, we can easily derive the values of the first and third terms. The rotational equivariant error
of the complete U-Net network under arbitrary angles is presented in the form of the following corollary:

Corollary 1. Under the same condition as Theorem 5, for an arbitrary θ ∈ [0, 2π], let πθ denote the rotation transformation,
then ∀θ we have ∣∣UNeteq

[
π̃R
θ

]
(X)− π̃R

θ [UNeteq] (X)
∣∣ ≤ R1h+R2h

2 +R3t
−1h, (70)

where R1 =
∑m

i=1

(∏3m+3
k=i+2 nk−1p

2Fk

)
Qi1 +

∑m
i=1

(∏3m+3
k=m+2i+3 nk−1p

2Fk

)
Ki1, R2 =

(∏3m+3
k=2 nk−1p

2Fk

)
n0

C1

2 (p +

1)2+
∑m

i=1

(∏3m+3
k=i+2 nk−1p

2Fk

)
Qi2+

(∏3m+3
k=m+3 nk−1p

2Fk

)
nm+1

Cm+2

2 (p+1)2(22m)+
∑m

i=1

(∏3m+3
k=m+2i+3 nk−1p

2Fk

)
Ki2+

n3m+2
C3m+3

2 (p+ 1)2, R3 = 2πF(max{H,W}+N(p+ 1))G0 + 2πF max{H,W}G0.

V. MORE DETAILS ABOUT OUR EXPERIMENTS

A. Datasets and Experimental Indicators

We try our best to conduct experiments in accordance with the original setup and validate our method in three classic
approaches. We closely adhered to the official experimental protocol outlined in the reference paper. For the Noise2Noise [5]
experiments, we conducted experiments on both RED30 [6] and U-Net networks. U-Net architecture can significantly speed up
training, although at the expense of some performance degradation. To improve efficiency, we demonstrated the effectiveness
of our method using the U-Net architecture. Our training dataset is the IMAGENET [7] validation set, which comprises
50,000 images. Testing was performed on well-established public datasets: Kodak24 [8], BSDS300 [9], Set14 [10]. In the
Noise2Void [11] experiments, we conducted experiments on both grayscale and color images. The R2R [12] experiments were
also conducted in accordance with the original settings. Throughout these experiments, we employed PSNR and SSIM as the
primary metrics for evaluating image denoising performance.

B. More Experimental Results

In the N2N method, we also used the RED30 network. RED30 has more layers than the U-Net network used in the main
text, and its residual structure is more suitable for image denoising tasks. The results are shown in table I. For the N2V method,
we followed the original paper’s setup and conducted experiments on grayscale images, with the results shown in table II.
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Gaussian25

Dataset N2N [5] N2N-EQ N2N-EQ+

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Kodak [8] 31.33 0.869 31.95 0.884 31.95 0.885
BSD300 [9] 30.06 0.865 30.49 0.876 30.60 0.879
Set14 [10] 29.91 0.848 30.42 0.860 30.41 0.860

Gaussian50

Dataset N2N [5] N2N-EQ N2N-EQ+

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Kodak [8] 27.98 0.762 28.97 0.802 28.99 0.803
BSD300 [9] 26.77 0.749 27.47 0.779 27.56 0.783
Set14 [10] 26.91 0.755 27.72 0.786 27.72 0.786

TABLE I
N2N: THE THREE NETWORKS WITH RED30 ARCHITECTURE WERE TESTED UNDER CONDITIONS OF GAUSSIAN NOISE AT LEVELS 25 AND 50. THE BEST

RESULTS HAVE BEEN BOLDED TO HIGHLIGHT THEM.

Dataset σ N2V [11] N2V-EQ N2V-EQ+

BSD68 25 25.62/0.743 26.07/0.726 27.47/0.773

TABLE II
N2V: EXPERIMENTS ON GRAYSCALE IMAGES. THE BEST RESULTS HAVE BEEN BOLDED TO HIGHLIGHT THEM.

We further design experiments to calculate the equivariant error1 for the N2V framework, as shown in table III. It can be
observed that N2V-EQ with strictly rotation-equivariance achieves the smallest rotational equivariant error. N2V-EQ+, relaxes
the equivariance constraints, which also achieves smaller equivariant errors than the original network. This verifies that the
improvements are achieved by reducing equivariant errors.

Method N2V N2V-EQ N2V-EQ+

Equivariant Error 0.2325 0.0682 0.0759

TABLE III
QUANTITATIVE COMPARISON OF ROTATIONAL EQUIVARIANT ERRORS.

We have conducted experiments with the SOTA method in the field of self-supervised fluorescence microscopy denoising [13].
The proposed method achieves a comparable performance with fewer parameters as shown in table IV.

Method Confocal Two-Photon Wide-Field #Param

PSNR/SSIM PSNR/SSIM PSNR/SSIM -

BM3D 31.28/0.820 32.20/0.879 31.26/0.760 -
DIP 33.94/0.902 32.35/0.853 28.57/0.603 2.2M

ZSN2N 34.27/0.910 32.76/0.869 25.84/0.398 22.2k
FM2S 34.99/0.909 33.46/0.883 30.14/0.707 3.2k

FM2S-EQ(ours) 35.04/0.905 33.49/0.881 29.93/0.705 1.6k

TABLE IV
DENOISING PERFORMANCE OF FM2S AND DIFFERENT METHODS ON THE NOISY IMAGES FROM THE FMD OFFICIAL TEST SET.

We have supplemented table V with experiments conducted on the real-world datasets.

1∥[LRΦ(f)− ΦLR(f)∥22/∥LRΦ(f)∥22, where Φ(·) represents the network and LR(·) denotes the rotation transformation.
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Method CBM3D MCWNNM N2V N2S R2R R2R-EQ R2R-EQ+

SIDD Validation 25.65 33.40 29.35 30.72 34.31 34.73 34.65
SIDD Benchmark 25.65 33.37 27.68 29.56 35.18 35.27 34.98
CC - - - - 34.31 35.28 34.34
PolyU - - - - 36.44 36.69 36.35
#Param - - - 0.22M 0.67M 0.17M 0.84M

TABLE V
PSNR COMPARISON OF DIFFERENT METHODS.

C. Remark

The difference compared to data augmentation and the necessity and significance of the proposed architecture:
Data augmentation (DA) is a classic way to improve network equivariance. However, the supervision of DA is imposed

only on the final output, with no direct impact on the intermediate layers of the network. Therefore, recent research has taken
more interest in incorporating equivariance into network architectures. Our approach aims to construct networks with adaptive
equivariance, and our sub-networks ensure that all network layers are equivariant. This is significantly different from DA.

Moreover, DA does not conflict with our approach, i.e., embedding rotation equivariance into the model. Actually, further
improvements can be achieved with the proposed method, even with DA.

Effectiveness is greater in N2V than in N2N and R2R:
As explained in the manuscript, the success of self-supervised deep learning relies on two factors: 1) prior information from

the training data and 2) prior information inherently embedded in the network architecture. In our experiments, N2N and R2R
methods require paired noisy images during training, whereas the N2V method can only utilize unpaired noisy images. This
means that less prior information can be obtained from the training data in the N2V framework. Therefore, the performance
of N2V relies more heavily on the prior information embedded in the network, while the proposed approach exactly focuses
on design networks embedded with more rotation symmetry prior. This is why the effectiveness of the proposed method is
greater in N2V.

D. More Visualization Results

(a)  GT (b)  N2N / 33.55dB (c)  N2N-EQ / 33.85dB (d)  N2N-EQ+ / 33.90dB

Fig. 2. N2N: Image denoising results of one image from kodak with σ = 25.
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(a)  GT (b)  N2V / 30.11dB (c)  N2V-EQ / 30.42dB (d)  N2V-EQ+ / 30.97dB

Fig. 3. N2V: Image denoising results of one image from BSD500 with σ = 50.

(a)  GT (b)  Low frequency power map (c)  High frequency power map (d)  Output of our proposed MaskNetwork

Fig. 4. The output result of the MaskNetwork branch in AdaReNet.
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