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Overview

This supplementary material is organized as follows:

Section | provides a more detailed explanation and visualization of the proposed synthetic and real-world dataset.
Section 2 provides comparisons of computational efficiency and more extensive ablation studies.

Section 3 provides additional qualitative experimental results.

1. Additional Dataset Details
1.1. Real-world LFE Dataset

We collect a real LFE dataset comprising 25 dynamic scenes using our LFE capture system, which is termed “LFE-real”.
The dataset consists of two main categories: 15 indoor sequences captured by moving our camera array through various
indoor environments and 10 autonomous driving sequences. Each sequence spans between 3 to 5 minutes. The detailed
system specifications adopted to collect this dataset, including resolution, baseline measurements, and exposure settings,
are provided in Table 1. Moreover, to provide a more intuitive visualization of our LFE-real dataset, we randomly select
9 sequences, convert them to RGB format [12], and display one frame from each sequence. The results are presented in
Fig. 1. It can be observed that, whether in autonomous driving scenarios or indoor scenes, our recorded dataset achieves clear
textures and rich content.

Table 1. Parameters of the LFE capture system.

Parameter | Specification
Cameras DAVIS346 x 4
Resolution 346 x 260 pixels
Baseline 6 cm

Exposure time 100 s

Focal Length 7 mm, 14 mm

1.2. Synthetic LFE Dataset

To generate the synthetic LFE dataset, referred to as LFE-syn, we leveraged the Carla simulator [4] to create diverse sequences
under controlled conditions. The dataset consists of 162 sequences, each spanning one minute, and is generated using 18
different maps provided by the simulator. Each map was divided into 9 regions, with a designated starting point in each region
where virtual vehicles equipped with a 5x5 event camera array were deployed. The baseline lengths between adjacent cameras
were randomly set between 3 cm and 9 cm to simulate varying spatial configurations, while each camera was configured with
a resolution of 346 x 260 pixels and a field of view of 90°. Detailed parameter configurations are summarized in Table 2.
The scenes in LFE-syn primarily consist of autonomous driving road scenarios, featuring pedestrians, vehicles, vegetation,
various traffic signs, and buildings from the simulation maps. To highlight the texture details of LFE-syn, we randomly
selected 9 sequences, converted them to RGB format [12], and extracted one representative frame from each. The results are
presented in Fig. 2. The dataset exhibits clear textures and rich content across diverse environments.

*Corresponding author



Figure 1. Visualization of sample frames from our real LFE dataset, “LFE-real.” Frames #1—#4 represent autonomous driving scenes,
while frames #5—#9 correspond to indoor scenes. The dataset exhibits clear textures and rich content across diverse environments.

Table 2. Parameters of the synthetic LFE dataset LFE-syn.

Parameter Specification
Simulator Carla [4]

Number of maps 18

Sequences per map 9

Camera array 5 X b event cameras
Resolution 346 x 260 pixels x 25
Baseline length Randomly set between 3 cm and 9 cm
Event trigger threshold (positive) 0.1t00.15

Event trigger threshold (negative) -0.15to -0.1

Field of view 90°

Sequence length 1 minute per sequence
Total synthetic sequences 162




#7 #8 #9

Figure 2. Visualization of sample frames from our LFE synthetic dataset. The dataset exhibits clear textures and rich content across diverse
environments.



2. Additional Ablations

2.1. Efficiency Comparisons

Below we provide the model size (M) and execution time (sec) for generating 5 x 5 x 256 x 256 LFEs with one NVIDIA
A100 GPU. As can be seen, although S2D-LFE has a larger model size due to its VAE+diffusion architecture, it shows
superior efficiency compared to other baselines (beyond distinct performance advantage), which validates its feasibility in
real-world scenarios.

Table 3. Efficiency comparisons of Guo et al. [6], R2L [9], and our S2D-LFE. Below we provide the model size (M) and execution time
(sec) for generating 5x5x256 x256 LFEs.

Method ‘ Parameters Time

Guo et al. [6] 745 M 3.622 sec
R2L [9] 23.77TM 3.171 sec
S2D-LFE 130.39 M 1.484 sec

2.2. Ablation of ContBlock and GeoBlock

To further validate the effectiveness of our LFE-adapter, we construct two variants by individually removing the ContBlock
and GeoBlock, replacing each with ResBlocks. As shown in Table 4, removing either block leads to perceptible performance
drops across PSNR, SSIM, and LPIPS. This finding indicates that both ContBlock and GeoBlock play a pivotal role in retain-
ing high reconstruction accuracy, structural fidelity, and perceptual quality. The comparisons confirm that each component is
crucial for sustaining the overall performance of S2D-LFE.

Table 4. Ablation study on S2D-LFE by individually removing the ContBlock and GeoBlock. The table compares the performance under
a setting of generating 25 views in the synthetic dataset. The best results are highlighted in bold. “1’: the higher the better performance,
‘}’: the opposite.

Method PSNR 1 SSIM + | LPIPS |
w/o ContBlock 23.55 0.691 0.254
w/o GeoBlock 23.61 0.690 0.262
LFE-adapter 24.06 0.701 0.239

3. Additional Experimental Results

3.1. In-training-scale Comparisons

In Fig. 3 and Fig. 4, we present an extended qualitative evaluation on four additional scenes (two synthetic and two real-
world) to further demonstrate the advantages of our proposed S2D-LFE (labeled “Ours”) over existing approaches. In the
synthetic scenes, it can be observed that our method surpasses competing approaches in terms of detail preservation and
texture fidelity. Notably, both DistgASR [10] and SAV [3] suffer from misalignment and artifacts, while ET-Net [ 1]+Guo et
al. [6]+Vid2E [5] exhibits localized aliasing. Moreover, R2L [9] occasionally loses fine-grained details, causing a pronounced
degradation in structural information. In contrast, our method more faithfully recovers the target views, effectively preserving
scene geometry and yielding visually superior results. Similarly, for real-world scenes, our S2D-LFE also delivers higher-
quality texture details and more accurate view alignment compared to the baselines.

In our manuscript, we only employ one learnable 3D representation method (R2L [9], a NeRF-based approach specialized
for LFs) as baseline. Recently, with the rise of learnable 3D representations, several methods [1, 2, 7, 8] have demonstrated the
ability to synthesize target views from only a small set of input view. However, these methods encounter several issues when
extended to the LFE modality. Specifically, (1) the inherent sparsity of LFEs increases the difficulty of modeling coherent
spatial relationships; (2) the extremely limited number of views makes it challenging for the model to learn a continuous
3D representation; and (3) methods that do not target LFs cannot exploit the inherent prior knowledge of view positions in
a LF setup. To substantiate these conclusions, we additionally compare our approach with MVSplat [2], a state-of-the-art
novel view synthesis method based on 3D Gaussian Splatting. The comparison results are listed in Table 5 below. It can be
observed that our approach outperforms MVSplat on multiple qualitative metrics, thereby providing evidence in support of
the above conclusion.
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Figure 3. The figure presents a qualitative comparison on the central view of the generated LFE, using synthetic testset. The proposed
S2D-LFE method (labeled as ”Ours”) is compared against other existing techniques, including SAV [3], Guo et al. [6], ET-Net [11] + Guo
et al. + Vid2E [5], R2L [9], DistgASR [10], and the ground-truth. The highlighted regions (yellow and green boxes) magnify specific areas
to emphasize the differences in event generation quality.
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Figure 4. The figure presents a qualitative comparison on the central view of the generated LFE, using real-world testset. The proposed
S2D-LFE method (labeled as ”Ours”) is compared against other existing techniques, including SAV [3], Guo et al. [6], ET-Net [11] + Guo
etal. + Vid2E [5], R2L [9], DistgASR [10], and the ground-truth. The highlighted regions (yellow and green boxes) magnify specific areas
to emphasize the differences in event generation quality.

Moreover, in Fig. 5, we present two additional experimental comparisons (one synthetic scene and one real-world scene)
to validate the superiority of our method in maintaining angular consistency under the in-training-scale setting. To provide
a clearer view of alignment across different views, we highlight the vertical epipolar with yellow dashed lines. Under
ideal conditions, the region delineated by the vertical epipolar in each viewpoint should exhibit only vertical disparity. It
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Figure 5. Qualitative comparison of angular consistency under the in-training-scale setting for both synthetic (top row) and real-world
(bottom row) test datasets. To provide a clearer view of alignment across different views, we highlight the vertical epipolar with yellow
dashed lines.

Table 5. Quantitative evaluation of MV Splat and our S2D-LFE. The table compares the performance under a setting of generating 25 views
in the synthetic dataset. The best results are highlighted in bold. “1’: the higher the better performance, ‘}’: the opposite.

Method | PSNR 1 | SSIM 1 | LPIPS |
MVSplat 19.54 0.558 0.442
S2D-LFE (Ours) 24.06 0.701 0.239

can be observed from Fig. 5 that, in the synthetic scenes, Guo et al. [6] and R2L [9] exhibit noticeable misalignments in
reconstructing houses across different views, where horizontal viewpoints produce vertical disparities. Meanwhile, SAV [3]
suffers from view aliasing. In contrast, our method provides consistent reconstructions with accurate inter-view alignment,
closely matching the ground truth. Similarly, in the real-world scenes, S2D-LFE effectively preserves angular consistency
while recovering the faithful details. These results demonstrate that S2D-LFE exhibits a advantage in maintaining angular
coherency in reconstruction results.

3.2. Out-of-training-scale Comparisons

We conducted an additional experiment to evaluate the performance of our method under varying numbers of generated
views, demonstrating its advantages in out-of-training-scale settings. Specifically, we selected a scene and compared our
method with Guo et al. [6], using 2 X 2 input views to generate 3 X 3,5 X 5, 7 X 7, and 9 x 9 views. It can be observed
from Fig. 6, Fig. 7, Fig. 8 and Fig. 9 that our method consistently maintains better angular consistency and reconstruction
detail across all four settings. In contrast, Guo et al. exhibits degradation in both detail preservation and view alignment as
the number of generated views increases. These findings demonstrate the superior generalization capability of our method,
particularly in scenarios requiring the generation of dense views beyond the training configuration.
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Figure 6. Qualitative comparison of generated LFEs under out-of-training-scale settings. Starting from 2 X 2 input views, 3 X 3 views

are generated using Guo et al. [6] and the proposed method (“Ours”). Our method demonstrates superior angular consistency and detail
preservation across all settings.
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Figure 7. Qualitative comparison of generated LFEs under out-of-training-scale settings. Starting from 2 X 2 input views, 5 X 5 views

are generated using Guo et al. [6] and the proposed method (“Ours”). Our method demonstrates superior angular consistency and detail
preservation across all settings.
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Figure 8. Qualitative comparison of generated LFEs under out-of-training-scale settings. Starting from 2 X 2 input views, 7 X 7 views

are generated using Guo et al. [6] and the proposed method (“Ours”). Our method demonstrates superior angular consistency and detail
preservation across all settings.
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Figure 9. Qualitative comparison of generated LFEs under out-of-training-scale settings. Starting from 2 X 2 input views, 9 X 9 views

are generated using Guo et al. [6] and the proposed method (“Ours”). Our method demonstrates superior angular consistency and detail
preservation across all settings.



References

(1]

(2]

(3]
[4]
(5]
(6]

(7]

(8]

(9]

(10]

(11]

[12]

Anpei Chen, Zexiang Xu, Fuqgiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast generalizable
radiance field reconstruction from multi-view stereo. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 14124-14133, 2021. 4

Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-Jen Cham, and Jianfei Cai. Mvs-
plat: Efficient 3d gaussian splatting from sparse multi-view images. In European Conference on Computer Vision, pages 370-386.
Springer, 2024. 4

Zhen Cheng, Yutong Liu, and Zhiwei Xiong. Spatial-angular versatile convolution for light field reconstruction. IEEE Transactions
on Computational Imaging, 8:1131-1144, 2022. 4,5, 6

A Dosovitskiy, G Ros, F Codevilla, et al. Carla: An open urban driving simulator. In Conference on Robot Learning, pages 1-16.
PMLR, 2017. 1,2

Daniel Gehrig, Mathias Gehrig, Javier Hidalgo-Carrid, and Davide Scaramuzza. Video to events: Recycling video datasets for event
cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 35863595, 2020. 4, 5
Mantang Guo, Junhui Hou, Jing Jin, Hui Liu, Huangiang Zeng, and Jiwen Lu. Content-aware warping for view synthesis. /EEE
Transactions on Pattern Analysis and Machine Intelligence, 45(8):9486-9503, 2023. 4, 5,6, 7, 8,9, 10

Michael Niemeyer, Jonathan T Barron, Ben Mildenhall, Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Regnerf: Regulariz-
ing neural radiance fields for view synthesis from sparse inputs. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 5480-5490, 2022. 4

Guangcong Wang, Zhaoxi Chen, Chen Change Loy, and Ziwei Liu. Sparsenerf: Distilling depth ranking for few-shot novel view
synthesis. In Proceedings of the IEEE/CVF international conference on computer vision, pages 9065-9076, 2023. 4

Huan Wang, Jian Ren, Zeng Huang, Kyle Olszewski, Menglei Chai, Yun Fu, and Sergey Tulyakov. R2l: Distilling neural radiance
field to neural light field for efficient novel view synthesis. In European Conference on Computer Vision, pages 612—629. Springer,
2022. 4,5,6

Yinggian Wang, Longguang Wang, Gaochang Wu, Jungang Yang, Wei An, Jingyi Yu, and Yulan Guo. Disentangling light fields for
super-resolution and disparity estimation. [EEE Transactions on Pattern Analysis and Machine Intelligence, 45(1):425-443, 2022.
4,5

Wenming Weng, Yueyi Zhang, and Zhiwei Xiong. Event-based video reconstruction using transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2563-2572,2021. 4, 5

Ziyi Wu, Xudong Liu, and Igor Gilitschenski. Eventclip: Adapting clip for event-based object recognition. arXiv preprint
arXiv:2306.06354, 2023. 1



	Additional Dataset Details
	Real-world LFE Dataset
	Synthetic LFE Dataset

	Additional Ablations
	Efficiency Comparisons
	Ablation of ContBlock and GeoBlock

	Additional Experimental Results
	In-training-scale Comparisons
	Out-of-training-scale Comparisons


