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7. Details of SASS and Ablation Experiments

As described in Subsection 3.3, the SASS strategy enhances
semantic capture in complex crack regions by scanning tex-
ture cues from multiple directions. SASS combines parallel
snake and diagonal snake scans, aligning the scanning paths
with the actual extension and irregular shapes of cracks, en-
suring comprehensive capture of texture information.

To evaluate the necessity of using four scanning paths
in SASS, we conducted ablation experiments with different
path numbers across various scanning strategies on multi-
scenario dataset TUT. As listed in Table 6, all strategies
performed significantly better with four paths than with
two, likely because four paths allow SAVSS to capture finer
crack details and topological cues. Notably, aside from
SASS, the diagonal snake-like scan consistently achieved
the second-best results, with two-path configurations yield-
ing F1 and mIoU scores 0.48% and 0.45% higher than the
diagonal unidirectional scan. This indicates that the diago-
nal snake-like scan provides more continuous semantic in-
formation, enhancing segmentation. Importantly, our pro-
posed SASS achieved the best results with both two-path
and four-path setups, demonstrating its effectiveness in cap-
turing diverse crack topologies.

To clarify the implementation of our proposed SASS, we
present its execution process in Algorithm 1.
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N ODS OIS P R F1 mIoU
2 0.8032 0.8126 0.7994 0.8474 0.8231 0.8365
4 0.8123 0.8184 0.8146 0.8523 0.8330 0.8427

Pa
Sn

a 2 0.8035 0.8124 0.8062 0.8458 0.8258 0.8369
4 0.8102 0.8162 0.8219 0.8365 0.8291 0.8408

D
ia

g 2 0.8080 0.8166 0.8058 0.8496 0.8271 0.8408
4 0.8091 0.8148 0.8225 0.8417 0.8320 0.8410

D
ig

Sn
a 2 0.8094 0.8162 0.8185 0.8470 0.8325 0.8413

4 0.8153 0.8215 0.8237 0.8497 0.8365 0.8451

SA
SS 2 0.8130 0.8192 0.8196 0.8478 0.8335 0.8430

4 0.8204 0.8255 0.8241 0.8545 0.8390 0.8479

Table 6. Ablation study on the number of paths in different scan-
ning strategies. N represents the number of paths. For two-path
scans, SASS uses the first parallel snake and diagonal snake scans,
while other methods use the first two paths. Best results are in
bold, and second-best results are underlined.

α : β ODS OIS P R F1 mIoU
BCE 0.8099 0.8151 0.8207 0.8457 0.8330 0.8414
Dice 0.8022 0.8072 0.8038 0.8430 0.8231 0.8358
5 : 1 0.8125 0.8168 0.8207 0.8432 0.8319 0.8428
4 : 1 0.8144 0.8184 0.8217 0.8442 0.8328 0.8437
3 : 1 0.8180 0.8229 0.8293 0.8436 0.8364 0.8463
2 : 1 0.8098 0.8152 0.8204 0.8392 0.8297 0.8408
1 : 1 0.8123 0.8184 0.8141 0.8507 0.8320 0.8423
1 : 2 0.8152 0.8214 0.8210 0.8484 0.8345 0.8443
1 : 3 0.8109 0.8163 0.8226 0.8396 0.8310 0.8418
1 : 4 0.8133 0.8185 0.8163 0.8515 0.8336 0.8433
1 : 5 0.8204 0.8255 0.8241 0.8545 0.8390 0.8479

Table 7. Sensitivity analysis experiments with different α and β
ratios. Best results are in bold, and second-best results are under-
lined.

8. Details of Objective Function and Analysis
The calculation formulas for BCE [29] loss and Dice [43]
loss are as follows:

LDice = 1−
2
∑M

j=1 pj p̂j + ϵ∑M
j=1 pj +

∑M
j=1 p̂j + ϵ

(20)

LBCE = − 1

N
[pj log(p̂j) + (1− pj) log(1− p̂j)] (21)

where M denotes the number of samples, pj is the ground
truth label for the j-th sample, p̂j is the predicted probabil-
ity for the j-th sample, ϵ is a small constant.

In equation 16, the ratio of α to β is set to 1:5. This is the
optimal ratio of α and β selected after experimenting with
various hyperparameter settings on multi-scenario dataset.
As listed in Table 7, setting the α to β ratio at 1:5 yields
the best performance, with improvements of 0.65% in F1
and 0.55% in mIoU over the 1:2 ratio. This suggests that
balancing Dice and BCE loss at a 1:5 ratio helps the model
better distinguish background pixels from the few crack re-
gion pixels, thereby enhancing performance.

9. Visualisation Comparisons
To visually demonstrate the advantages of SCSegamba, we
present detailed visual results in Figure 7. For the Crack500
[56], DeepCrack [35], and CrackMap [22] datasets, which
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Figure 7. Visual comparison with 9 SOTA methods across four public datasets. Red boxes highlight critical details, and green boxes mark
misidentified regions.

primarily include bitumen, concrete, and brick scenarios
with minimal background noise and a range of crack thick-
nesses, our method consistently achieves accurate segmen-
tation, even capturing intricate fine cracks. This is attributed
to GBC’s strong capability in capturing crack morphology.
In contrast, other methods show weaker performance in

continuity and fine segmentation, resulting in discontinu-
ities and expanded segmentation areas that do not align with
actual crack images.

For the TUT [33] dataset, which includes diverse scenar-
ios and significant background noise, our method excels at
suppressing interference. For instance, in images of cracks



Layer Num ODS OIS P R F1 mIoU Params ↓ FLOPs ↓ Model Size ↓
2 0.8102 0.8165 0.8181 0.8420 0.8299 0.8413 1.56M 12.26G 20MB
4 0.8204 0.8255 0.8241 0.8545 0.8390 0.8479 2.80M 18.16G 37MB
8 0.8174 0.8222 0.8199 0.8579 0.8387 0.8461 5.23M 29.27G 68MB

16 0.8126 0.8187 0.8226 0.8475 0.8349 0.8430 10.08M 51.51G 127MB
32 0.5203 0.5365 0.5830 0.5680 0.5754 0.6785 19.79M 95.97G 247MB

Table 8. Experiments with different numbers of SAVSS layers. Best results are in bold, and second-best results are underlined.

Patch Size ODS OIS P R F1 mIoU Params ↓ FLOPs ↓ Model Size ↓
4 0.8053 0.8128 0.8146 0.8443 0.8294 0.8381 2.61M 51.81G 34MB
8 0.8204 0.8255 0.8241 0.8545 0.8390 0.8479 2.80M 18.16G 37MB

16 0.7910 0.7937 0.8126 0.8141 0.8133 0.8272 3.59M 9.74G 45MB
32 0.7318 0.7364 0.7535 0.7576 0.7555 0.7879 6.74M 7.64G 82MB

Table 9. Experiments with different patch sizes. Best results are in bold, and second-best results are underlined.

Methods ODS OIS P R F1 mIoU Params ↓ FLOPs ↓ Model Size ↓
MambaIR [16] 0.7869 0.7956 0.7714 0.8445 0.8071 0.8240 3.57M 19.71G 29MB
CSMamba [37] 0.7140 0.7201 0.6934 0.8171 0.7503 0.7773 12.68M 15.44G 84MB

PlainMamba [55] 0.7787 0.7896 0.7617 0.8531 0.8064 0.8201 2.20M 14.09G 18MB
SCSegamba (Ours) 0.8204 0.8255 0.8241 0.8545 0.8390 0.8479 2.80M 18.16G 37MB

Table 10. Comparison experiments of different Mamba-based methods using 4 VSS layers. Best results are in bold, and second-best results
are underlined.

on generator blades and steel pipes, it effectively minimizes
irrelevant noise and provides precise crack segmentation.
This performance is largely attributed to SAVSS’s accu-
rate capture of crack topologies. In contrast, CNN-based
methods like RIND [38] and SFIAN [5] struggle to dis-
tinguish background noise from crack regions, highlighting
their limitations in contextual dependency capture. Other
Transformer and Mamba-based methods also fall short in
segmentation continuity and detail handling compared to
our approach.

10. Additional Analysis
To provide a thorough demonstration of the necessity of
each component in our proposed SCSegamba, we con-
ducted a more extensive analysis experiment.
Comparison with different numbers of SAVSS layers.
In our SCSegamba, we used 4 layers of SAVSS blocks to
balance performance and computational requirements. As
listed in Table 8, 4 layers achieved optimal results, with F1
and mIoU scores 0.036% and 0.21% higher than with 8 lay-
ers, while reducing parameters by 2.43M, computation by
11.11G, and model size by 31MB. Although using only 2
layers minimized resource demands, with 1.56M parame-
ters, performance decreased. Conversely, using 32 layers
increased resource use and reduced performance due to re-
dundant features, which impacted generalization. Thus, 4
SAVSS layers strike an effective balance between perfor-

mance and resource efficiency, making it ideal for practical
applications.
Comparison with different Patch Size. In our SAVSS,
we set the Patch Size to 8 during Patch Embedding. To ver-
ify its effectiveness, we conducted experiments with various
Patch Sizes. As listed in Table 9, a Patch Size of 8 yields
the best performance, with F1 and mIoU scores 1.16% and
1.17% higher than a Patch Size of 4. Although a smaller
Patch Size of 4 reduces parameters and model size, it limits
the receptive field and hinders the effective capture of longer
textures, impacting segmentation. As shown in Figure 9, as
the Patch Size increases, parameter count and model size
decrease, but the computational load per patch rises, affect-
ing efficiency. At a Patch Size of 32, performance drops
significantly due to reduced fine-grained detail capture and
sensitivity to contextual variations. Thus, a Patch Size of 8
balances detail accuracy and generalization while maintain-
ing model efficiency.
Comparison under the same number of VSS layers. In
Subsection 4.3, we compare SCSegamba with other SOTA
methods, using default VSS layer settings for Mamba-
based models like MambaIR [16], CSMamba [37], and
PlainMamba [55]. To examine complexity and perfor-
mance under uniform VSS layer counts, we set all Mamba-
based models to 4 VSS layers and conducted comparisons.
As listed in Table 2 and 10, although computational re-
quirements for MambaIR, CSMamba, and PlainMamba de-
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Figure 8. Schematic of real-world deployment. The intelligent vehicle is placed on an outdoor road surface, and we use the server terminal
to remotely control it. The vehicle transmits the video data in real-time to the server, where it is processed to obtain the final output.

crease, their performance drops significantly. For exam-
ple, CSMamba’s F1 and mIoU scores drop to 0.7503 and
0.7773. While PlainMamba with 4 layers achieves reduc-
tions of 0.60M in parameters, 4.07G in FLOPs, and 19MB
in model size, SCSegamba surpasses it by 4.04% in F1 and
3.39% in mIoU. Thus, with 4 SAVSS layers, SCSegamba
balances performance and efficiency, capturing crack mor-
phology and texture for high-quality segmentation.

Figure 9. Comparison of computing resources required for differ-
ent Patch Size

11. Real-world Deployment Applications
To validate the effectiveness of our proposed SCSegamba in
real-world applications, we conducted a practical deploy-
ment and compared its real-world performance with other

SOTA methods. Specifically, our experimental system con-
sists of two main components: the intelligent vehicle and
the server. The intelligent vehicle used is a Turtlebot4 Lite
driven by a Raspberry Pi 4, equipped with a LiDAR and
a camera. The camera model is OAK-D-Pro, fitted with
an OV9282 image sensor capable of capturing high-quality
crack images. The server is a laptop equipped with a Core
i9-13900 CPU running Ubuntu 22.04. The intelligent ve-
hicle and server communicate via the internet. This setup
simulates resource-limited equipment to evaluate the per-
formance of our SCSegamba in real-world deployment sce-
narios.

As shown in Figure 8, in the real-world deployment pro-
cess, the intelligent vehicle was placed on an outdoor road
surface filled with cracks. We remotely controlled the ve-
hicle from the server terminal, directing it to move forward
in a straight line at a speed of 0.15 m/s. The camera cap-
tured video at a frame rate of 30 frames per second. The
vehicle transmitted the recorded video data to the server in
real-time via the network. To accelerate data transmission
from the vehicle to the server, we set the recording reso-
lution to 512 × 512. Upon receiving the video data, the
server first segmented it into frames, then fed each frame
into the pre-trained SCSegamba model, which was trained
on all datasets, for inference. After segmentation, the server



Methods Inf Time↓
RIND [38] 0.0909s
SFIAN [5] 0.0286s

CTCrackseg [44] 0.0357s
DTrCNet [48] 0.0213s
Crackmer [46] 0.0323s
SimCrack [20] 0.0345s
CSMamba [37] 0.0625s

PlainMamba [55] 0.1667s
MambaIR [16] 0.0400s

SCSegamba (Ours) 0.0313s

Table 11. Comparison of inference time with other SOTA methods
on resource-constrained server.

recombined the processed frames into a video, yielding the
final output. This setup simulates real-time crack segmen-
tation in an real-world production process.

Additionally, we deployed the weight files of other
SOTA methods on the server for comparison. As listed
in Table 11, our SCSegamba achieved an inference speed
of 0.0313 seconds per frame on the resource-constrained
server, outperforming most other methods. This demon-
strates that our method has excellent real-time performance,
making it suitable for real-time segmentation of cracks in
video data.

As shown in Figure 10, compared to other SOTA meth-
ods, our SCSegamba better suppresses irrelevant noise in
video data and generates continuous crack region segmen-
tation maps. For instance, although SSM-based methods
like PlainMamba [55], MambaIR [16], and CSMamba [37]
achieve continuous segmentation, they tend to produce false
positives in some irrelevant noise spots. Additionally, while
CNN and Transformer-based methods achieve high metrics
and performance on datasets with faster inference speed,
their performance on video data is suboptimal, often show-
ing discontinuous segmentation and poor background sup-
pression. For example, cracks segmented by DTrCNet [48]
and CTCrackSeg [44] exhibit significant discontinuities,
and Crackmer [46] struggles to distinguish between crack
and background regions. Based on the above real-world
deployment results, our SCSegamba produces high-quality
segmentation results on crack video data with low param-
eters and computational resources, making it more suit-
able for deployment on resource-constrained devices and
demonstrating its strong performance in practical produc-
tion scenarios.

Algorithm 1 SASS execution process

1: Input: Patch matrix dimensions H , W
2: Output: O = (o1, o2, o3, o4), O inverse =

(o1 inverse, o2 inverse, o3 inverse, o4 inverse),
D = (d1, d2, d3, d4)

3: Initialize: L = H ×W
4: Initialize (i, j)← (0, 0) for o1, (H − 1,W − 1) if H is

odd else (H − 1, 0) for o2
5: id ← down, jd ← left if H is odd else right
6: while j < W or i ≥ 0 do
7: idx ← i × W + j, append idx to o1, set

o1 inverse[idx]
8: if id = down and i < H − 1 then
9: i← i+ 1, add down to d1

10: else
11: j ← j + 1, id ← up if i = H − 1 else down, add

right to d1
12: end if
13: idx ← i × W + j, append idx to o2, set

o2 inverse[idx]
14: if jd = right and j < W − 1 then
15: j ← j + 1, add right to d2
16: else
17: i ← i − 1, jd ← left if j = W − 1 else right,

add up to d2
18: end if
19: end while
20: d1← [dstart] + d1[: −1], d2← [dstart] + d2[: −1]
21: for diag← 0 to H +W − 2 do
22: direction← right if diag is even else down
23: for k ← 0 to min(diag + 1, H,W )− 1 do
24: i, j ← (diag−k, k) if diag is even else (k, diag−k)

25: if j < W then
26: idx← i×W + j
27: Append idx to o3, set o3 inverse[idx], add

direction to d3
28: end if
29: i, j ← (diag − k,W − k − 1) if diag is even else

(k,W − diag + k − 1)
30: if j < W then
31: idx← i×W + j
32: Append idx to o4, set o4 inverse[idx], add

direction to d4
33: end if
34: end for
35: end for
36: d3← [dstart] + d3[: −1], d4← [dstart] + d4[: −1]
37: Return: O, O inverse, D
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Figure 10. Visualisation comparison on video data keyframes. The interval between keyframes is 100 frames in order to ensure continuity
of observation. Red boxes highlight critical details, and green boxes mark misidentified regions.
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