Supplementary Material

In this appendix, we first present additional implementa-
tion details and experimental settings in Sec. A and Sec. B,
which were omitted from the main paper due to page limit.
We then report additional analyses in Sec. C. Finally, we
show more reconstruction results of our method in Sec. D.

A. Implementation details

Retrieval module. We propose a lightweight module for
efficient scene frame retrieval to support the keyframe reg-
istration. The retrieval module directly reuses I12P’s decoder
blocks as its backbone, followed by a linear projection and
an average-pooling layer. Specifically, it uses the first two
blocks from both the supporting and keyframe decoders, for
scene frames and keyframes (awaiting registration), respec-
tively. It takes as input image features of one keyframe and
all the scene frames in the buffering set, predicting correla-
tion scores between the keyframe and each buffering frame.
Notably, the correlation scores share similar behavior with
the mean confidence of the I2P model’s final prediction and
offer unique advantages over the cosine similarity between
image features of two frames. These correlation scores ac-
count for both visual similarity and provide suitable base-
lines for 3D reconstruction.

The module inherits the weights of the first two layers of
the decoder in I2P model. During training, only the weights
of the linear projection are updated using an L1 loss:
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where R is the number of input supporting frames, S; is
the predicted correlation score between supporting frame i
and the keyframe, C; is the predicted confidence from the
complete I2P model. Both S; and C; are normalized to [0,1]
before calculating the loss.

Multi-keyframe co-registration. In practice, our scene
decoder in the L2W model adopts the same architecture as
the keyframe decoder in the I2P model, allowing for the si-
multaneous input and registration of multiple keyframes. In
the decoding stage, scene frames and keyframes exchange
information bidirectionally: each scene frame queries fea-
tures from all keyframes, and each keyframe interacts with
all scene frames. Compared to single-keyframe registration,
this extension significantly reduces computational overhead
by registering multiple keyframes with a single pass of
the scene decoder. Furthermore, incorporating information
from additional keyframes enhances the refinement of scene

frame features, leading to more accurate reconstruction for
all input frames.

Training details. To construct the training data, we utilize
all iPhone and DSLR frames registered by COLMAP [47]
from the training splits of ScanNet++[71]. Additionally,
we include all frames from the first 450 scenes of the Aria
Synthetic Environments (ASE)[3] dataset and 41 categories
from CO3D-v2 [41], with each category containing up to
50 randomly sampled scene sequences. We introduce two
ways to extract video clips for training. For ScanNet++
and ASE, we adopt uniform sampling with strides of 3
and 2, respectively. For CO3D-v2, frames are randomly
sampled within temporal segments covering half the length
of each video. In total, we extract approximately 850K
clips. During each epoch of training, we randomly sample
4000, 2000, and 2000 clips from the ScanNet++, ASE, and
CO3D-v2 datasets, respectively. All training images are re-
sized and then center-cropped to 224 x 224 pixels. Standard
data augmentation techniques [64] are applied.

To train our I2P model, we extend the training process
of DUSt3R from two views to multiple views. Specifically,
our I2P model takes as input a video clip of length 11, and
designates the middle frame as the keyframe. We train the
I2P model for 100 epochs, which takes about 6 hours. After
that, we train the retrieval module built on the I2P model.
During training, we freeze all other modules and use L1
loss to supervise the correlation score against the mean con-
fidence of the I2P model’s final predictions. This module
requires 50 epochs of training, which takes about 2 hours.

To train the L2ZW model, we use clips of length 12, with
the first six images selected as scene frames, and the last
six images designated as keyframes to register. The model
is trained for 200 epochs in total, and the training process
takes approximately 16 hours. When training with ground
truth pointmaps as input, we set invalid points to (0,0,0).
A confidence-aware loss without scale normalization is ap-
plied, ensuring that the predicted point maps retain consis-
tent scale with the input scene frames.

Our training is conducted on 8§ NVIDIA 4090D GPUs,
each with 24GB of memory and a batch size of 4 per GPU.

B. Details for experimental settings

Calculation of the evaluation metrics. To evaluate re-
construction quality, we use accuracy and completeness as
our metrics. They are calculated by:
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Figure 6. The reconstruction results and the corresponding accuracy heatmaps of MASt3R [28] on Office 3 from Replica [54] dataset under

different confidence thresholds. Lighter colors indicate higher accuracy.

Figure 7. Visualization of the incremental reconstruction process of our method on the Office 3 and Room 1 of Replica [54] dataset. Our

method achieves low drift without any global-optimization stage.

Figure 8. Reconstruction results on unorganized image collections from DTU [1] dataset.

P and @ are the numbers of points in the reconstructed
point cloud and GT point cloud respectively. D(-) repre-
sents Euclidean distance, and x; and y; represent iterating
each point from the reconstructed and GT point cloud.

To measure the efficiency, we report FPS (frames per
second), which is calculated by:

FPS = F/time,

where time is the total time used to reconstruct the scene,
and F' is the number of frames from the video.

We evaluate the camera pose accuracy using absolute tra-
jectory error (ATE-RMSE), which is formulated by:

ATE-RMSE = !
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Method ‘ Chess Fire Heads Office Pumpkin RedKitchen Stairs ‘ Average ‘ FPS
DUS3R [64] (w/PnP) 509 488 252 12.07 10.64 10.35 10.55 8.02 <1
MASt3R [28] (w/PnP) 432 292 147 12.37 11.82 7.98 3.04 6.28 <l
NICER-SLAM [79]* 328 685 416 10.84 20.00 3.94 10.81 8.55 <1
DROID-SLAM [56]* 336 240 143 9.19 16.46 4.94 1.85 5.66 ~20
Spann3R [61] 918 6.69 7.10 21.56 12.83 14.06 10.43 11.70 >50
SLAM3R-NoConf (Ours) | 629 533 447 12.42 11.74 9.53 9.30 8.44 ~25
SLAMB3R (Ours) 620 530 456 12.40 11.71 9.47 9.20 8.41 ~25

Table 6. Camera pose estimation results on the 7Scenes [51] dataset reported using the ATE-RMSE (cm) metric. The average numbers are
computed over all test scenes. * denotes the results reported in NICER-SLAM.

Method ‘ Room0 Room1 Room2 Office0 Officel Office2 Office3 Office 4 ‘ Average ‘ FPS
DUSIt3R [64] (w/PnP) 4.00 4.49 7.62 4.88 4.04 3.90 2.84 6.30 4.76 <1
MASt3R [28] (w/PnP) 1.07 0.99 0.87 0.90 4.90 1.21 1.77 1.63 1.67 <1
NICER-SLAM [79]* 1.36 1.60 1.14 2.12 3.23 2.12 1.42 2.01 1.88 <1
GO-SLAM [75] - - - - - - - - 0.39 ~8
DIM-SLAM [29] 0.48 0.78 0.35 0.67 0.37 0.36 0.33 0.36 0.46 ~3
DROID-SLAM [56]* 0.34 0.13 0.27 0.25 0.42 0.32 0.52 0.40 0.33 ~20
Spann3R [61] 29.76 34.78 26.08 34.50 22.65 34.47 42.24 37.84 32.79 >50
SLAMB3R-NoConf (Ours) 4.54 5.89 5.73 11.17 6.32 6.15 4.99 8.05 6.61 ~24
SLAMB3R (Ours) 4.56 5.88 5.72 11.17 6.32 6.15 4.95 8.09 6.61 ~24

Table 7. Camera pose estimation results on the Replica [54] dataset reported using the ATE-RMSE (cm) metric.

where T7¢"% and T'9* are the camera center positions of the
predicted and GT camera trajectories.

Full video as input on Replica [54]. On the Replica
dataset, we reconstruct the entire scene geometry using all
video frames. With the stride of the sliding window set to
1, all frames will be used as a keyframe once. For each
window, frames are sampled around the keyframe, with
Skip = 20 frames per supporting frame, to ensure reason-
able camera motion (disparity). We co-register Co = 10
keyframes at each time, which share the same K = 10
scene frames as a reference. These scene frames are se-
lected through a two-step process. First, we calculate the
correlation score between all frames in the buffering set
and the Co keyframes. Then, we select K frames from
the buffering set that show the highest total correlation
score with these keyframes. After every R = 20 regis-
tered keyframes, we update the buffering set by retaining
the keyframes with the highest reconstruction scores, where
reconstruction score of a frame is the product of its mean
confidence predicted by I2P and L2W model. The inser-
tion/update follows the reservoir sampling probability de-
scribed in the main paper.

Sampled frames as input on 7 Scenes [51]. Following
Spann3R [61], the frames in each test sequence are sampled
with a stride of 20, and we only reconstruct the points from
the sampled frames. To handle sampled-frame-only input,

we adapt our reconstruction pipeline for full-video input by
setting Skip = 1, Co =2, K = 5, and R = 1 in practice.

Experiments on DUSt3R [64] and MASt3R [28]. The
global optimization with complete graph setting in DUSt3R
and MASt3R requires substantial GPU memory. Conse-
quently, to evaluate the global reconstruction quality of
these two methods on the Replica dataset, we uniformly
sample 1/20 of the images. DUSt3R is tested using the
weight-224 model with a resolution of 224 x224, the same
as our input resolution, while MASt3R is tested using
the weight-512 model with resolutions of 512x384 and
512 %288 as inputs for reconstructing the 7 Scenes [51] and
Replica [54] datasets, respectively. Note that a resolution of
224 %224 results in less overlap between adjacent frames,
making reconstruction inherently more challenging.
During the evaluation, we observed that MASt3R oc-
casionally generates floating points with high confidence
scores, which are difficult to filter using confidence thresh-
olds and significantly degrade accuracy. An example of
this issue is shown in Figure 6. In contrast, our confidence
scores are more effective and successfully reduce erroneous
points. The results of SLAM3R reported on 7 Scenes and
Replica datasets use a fixed confidence threshold of 3.

C. Additional comparisons and analyses

More numerical results. We report more quantitative
comparisons of reconstruction results on ScanNet [11],
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Figure 9. Inner-window keyframe reconstruction results from var-
ious window lengths.

Tanks and Temples [26], and ETH3D [50] datasets. We
sampled three scenes from each dataset, and report the re-
sults in Table 8. SLAM3R outperforms Spann3R in most
cases and demonstrates performance either comparable to
or better than DUSt3R. These results further verify our
method’s effectiveness.

ScanNet \ scene0011-00  scene0015_00 scene0019.00  Average

DUSI3R [64] 5.56/3.76 5.04/4.10 452/474  5.04/4.20
Spann3R [61] 13.09/11.37 8.51/7.79 797/9.66  9.86/9.61
SLAM3R (Ours) 5.86/3.98 5.98/5.97 4.27/434  537/4.76
Tanks and Temples ‘ Ignitius Truck Caterpillar Average

DUSI3R [64] 3.55/1.22 9.31/4.85 12.67/525 8.51/3.77
Spann3R [61] 5.51/1.10 6.40/12.61 11.50/5.74  7.80/6.48
SLAM3R (Ours) 3.30/0.94 5.35/5.59 12.26/5.05  6.97/3.86
ETH3D ‘ plant_scene_1 table_3 sofa_1 Average

DUSt3R [64] 2.98/2.48 3.13/1.30 2.05/3.67 2.72/2.48
Spann3R [61] 2.54/4.25 3.03/2.08 2.10/4.55 2.56/3.62
SLAM3R (Ours) 2.36/1.98 2.75/1.34 2.13/1.90 2.41/1.74

Table 8. Reconstruction errors (accuracy / completeness) on Scan-
Net [11], Tanks and Temples [26], and ETH3D [50] datasets.

Diminishing return of window length. In the main pa-
per, we report the I2P reconstruction results with different
window lengths. Here, we further analyze the diminishing
returns, which indicate that the window length should not
be too large. As Figure 9 shows, the accuracy and com-
pleteness of the keyframe reconstruction improve rapidly at
first as input frames increase, but then gradually decline.
This is because larger windows result in less and less over-
lapping. Additionally, the inference time becomes signifi-
cantly slower as length increases. Consequently, we set the
window size to 11 in our main experiments, balancing the
reconstruction quality and runtime efficiency.

Effect of scene frame numbers on registration. We con-
duct experiments on the Replica [54] dataset to investigate
how the number of scene frames selected as a global refer-
ence affects the registration quality of keyframes. As re-

# Scene frames  Acc.  Comp. FPS

1 4.18 2.61 ~398
5 3.99 2.79 ~247
10 3.57 2.62 ~152
20 3.57 2.60 ~86
30 3.59 2.58 ~61
40 4.15 3.05 ~46
50 4.27 3.15 ~37

Table 9. Reconstruction results on Replica [54] dataset, with vari-
ous maximum number of scene frames selected for keyframe reg-
istration. The FPS of the L2ZW model aligning 10 keyframes at
once with different numbers of input scene frames is also reported.

ported in Table 9, the accuracy of full-scene registration
initially improves as the maximum number of input scene
frames increases but eventually declines beyond a certain
threshold. Retrieving too few scene frames from the buffer-
ing set risks missing suitable frames and causing keyframe
registration to get stuck in local minimums. Conversely, se-
lecting too many scene frames can introduce irrelevant ones
that add noise and hinder registration.

To balance reconstruction accuracy and runtime effi-
ciency, we set the number of retrieved scene frames to 5
and 10 on 7 Scenes [51] and Replica [54] dataset, which
achieves consistent and reliable performance.

Camera pose estimation. The detailed results are pre-
sented in Table 6 and Table 7. For DUSt3R [64] and
MASt3R [28], we evaluate the camera poses derived via the
PnP-RANSAC solver with their predicted pointmaps (af-
ter global alignment) and GT intrinsic parameters. When
evaluating Spann3R [61] on the Replica [54] dataset, only
one-twentieth of the frames are used, as it fails to give rea-
sonable results with all frames input.

We outperform the concurrent work Spann3R [61],
demonstrating the effectiveness of our hierarchical design
with multi-view input and global retrieval. Among clas-
sical SLAM systems, the pose errors of GO-SLAM [75]
and DROID-SLAM [56] are lower than those of NICER-
SLAM. However, their reconstruction accuracy and com-
pleteness are worse. This discrepancy between pose and
reconstruction errors indicates that effective end-to-end 3D
reconstruction is possible and promising without first ob-
taining precise camera poses.

D. More visual results

Visualization of incremental reconstruction. Figure 7
visualizes the process of our incremental reconstruction on
two scenes from Replica [54]. Our method achieves effec-
tive alignment at loops while experiencing minimal cumu-
lative drift, without offline global optimization step.



Reconstruction on DTU [1] dataset.

The results are

shown in Figure 8. Note that our method does not require
any camera parameters, and produces dense point cloud re-
constructions end-to-end in real-time.
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