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1. Derivation Details of S7 Block
In this section we formalize S7 block, which efficiently gen-

erates stylised feature via global convolution.

1.1. Global Convolution by Vectorized Sequence

As shown in Eq. 3, the output can be computed by a RNN

form. For the discretized version in our task, the parameters

and input sequence are vectorized. The input sequence x ∈
L ∗ E. So Eq. 3 can be rewrite as follow:

hi = Aihi−1 +Bixi,

yi = Cihi +Dxi,
(I)

where i ∈ [1, L] represents time step and initial implicit

latent state h0 ∈ N ∗ E is zero-initialized. And the ith input

token xi ∈ 1 ∗ E, the weight parameters Ai ∈ N ∗ E, Bi ∈
N ∗ E, Ci ∈ 1 ∗ N and D ∈ E. To simplify the calculus,

we remove Dxi since it can be seen as a skip connection

multiplied by a scale factor D. Then we can focus on ith

step output vector yi:

yi = Cihi

= Ci(Aihi−1 +Bixi)

= Ci(Ai(Ai−1hi−2 +Bi−1xi−1) +Bixi)

......

= CiBixi +CiA1Bi−1xi−1 +Ci(

2∏
j=1

Aj)Bi−2xi−2+

...+Ci(
i−1∏
j=1

Aj)B1x1 +Ci(
i∏

j=1

Aj)h0,

(II)

where h0 = 0. Then the formulation of yi ∈ 1 ∗ E can be

simplified as:

yi = Ci

i∑
m=1

(W(m,i)xm), (III)
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The weight W(m,i) ∈ N ∗ E(m ≤ i ≤ L) is represent as

follow:

W(m,i) = (
i−m∏
n=1

An)Bm. (IV)

The output sequence y = (y1,y2, ...,yL)
T ∈ L∗E. Then

we can deduce the parallel convolution formulation of y:

y =
(
C1(W(1,1)x1),C2

2∑
m=1

(W(m,2)xm),C3

3∑
m=1

(W(m,3)xm),

...,CL

L∑
m=1

(W(m,L)xm)
)T

=

(
(C1,C2, ...,CL) ·

(
W(1,1)x1,

2∑
m=1

(W(m,2)xm), ...

,
L∑

m=1

(W(m,L)xm)
))T

=

(
CT ·

(
W(1,1)x1,

2∑
m=1

(W(m,2)xm), ...,

L∑
m=1

(W(m,L)xm)
))T

= C ·
(
(W(1,1),W(1,2), ...,W(1,L))� (x1,x2, ...,xL)

)T

= C ·
(
(W(1,1),W(1,2), ...,W(1,L))� xT

)T

= C ·
(
(W(1,1),W(1,2), ...,W(1,L))

T � x
)
.

(V)

Following Eq. V, we can get the structured global convolu-

tion kernel:

K = (W(1,1),W(1,2), ...,W(1,L))
T . (VI)

Then we obtain the final formulation of the output sequence

y:

y = C · (K� x), (VII)

where � denotes convolution operation.

Following the protocol above, we can obtain model con-

fig. D in Table 2. When replacing S7 block by S6 block, the



Algorithm I SAVSSM (S6 Block) Process

Require: content feature Ec: (C, H, W),
style embedding Es: (C, Hs, Ws)

Ensure: stylized feature Ecs: (C, H, W)
1: /* pre-proces content feature Ec */

2: E′
c: (C, H, W) ← SAIN(Ec,Es)

3: E′
c : (E, H, W) ← Linear(E′

c)
4: E′

c : (E, H, W) ← SiLU(SConv(E′
c,Es))

5: /* process with four S6 Blocks, sequence length L = H ∗ W */

6: for p in {path1, path2, path3, path4} do
7: xp: (L, E) ← p(E′

c)
8: Bp: (L, N) ← LinearBp (xp)
9: Cp: (L, N) ← LinearCp (xp)

10: /* softplus ensures positive Δp */

11: Δp: (L, E) ← log(1 + exp(LinearΔp (xp) +
ParameterΔp ))

12: /* parameters A, D from concrete embedding space */

13: Ap: (N, E) ← ParameterAp
14: Dp: (E, ) ← ParameterDp
15: /* discretization process */

16: Ap: (L, N, E) ← exp(Δp

⊗
Ap)

17: Bp : (L, N, E) ← Δp

⊗
Bp

18: yp : (L, E) ← SSM(Ap,Bp,Cp,Dp)(xp)
19: yp : (E, H, W) ← Merge(yp)
20: end for
21: E′

cs : (E, H, W) ← SAIN(ypath1 + ypath2 + ypath3 +
ypath4,Es)

22: Ecs : (C, H, W) ← Linear(E′
cs) + SCM(Ec,Es)

Return: Ecs

SAVSSM process is shown in Algorithm I. Compared with

config. A, parameters A and D are from concrete embed-

ding space without introducing style information in hidden

space updating.

1.2. Style-aware S6 Block (S7 Block)

As for each S7 block, the content image feature E′
c ∈ E∗H∗

W is firstly scanned to input sequence x ∈ L ∗ E (L = H ∗ W).

The timescale parameter Δ ∈ L ∗ E is input-dependent:

Δ = softplus(LinearΔ(x)). (VIII)

As for the weighting parameters, B ∈ L∗N∗E and C ∈ L∗N
are also predicted from input sequence x:

B = Δ⊗ LinearB(x),

C = LinearC(x),
(IX)

where ⊗ refers to Einstein summation convention. Then

different from S6 block, our style-aware weighting parame-

ters A ∈ L ∗ N ∗ E and D ∈ E are predicted from the style

embedding Es ∈ E ∗ Hs ∗ Ws:

A = exp
(
Δ⊗EmbedderA(Es)

)
,

D = EmbedderD(Es).
(X)

Table I. Quantitative comparison of the mamba-based ST methods.

Run time and MACs are evaluated on 512× 512 output resolution

with a single NVIDIA RTX 3090 GPU.

Metrics
Mamba-based

Mamba-ST SaMam (Ours)

LPIPS ↓ 0.5058 0.3884

FID ↓ 22.663 17.946

ArtFID ↓ 35.632 26.305

CFSD ↓ 0.4120 0.2703

MACs (G) ↓ 859.9 77.1

Time (s) ↓ 0.138 0.034

Params (M) ↓ 40.03 18.50

Then we obtain the stylized output sequence y ∈ L ∗ E:

y = C · (K� x) +D ∗ x, (XI)

where K is generated by A and B following Eq. VI.

With the aforementioned style-aware parameters A and

D which can be expanded to global convolution kernel, we

explore to generate stylized feature by a style-aware convo-

lution. This is similar with AdaConv [4]. By doing so, the

scheme adds style information to content feature efficiently

while maintaining long-range dependency in content.

2. Comparison with Synchronous Mamba-
based Work

We notice that there is a Mamba-based ST method: Mamba-

ST [3]. The method also proposes a pipeline with mamba

encoder and mamba decoder. As 2 synchronous works, our

SaMam differs from Mamba-ST in following aspects.

(1) Stylized Feature Generation: Mamba-ST generate

stylized features in a self-attention perspective. Following

the protocol of [1, 6], in decoder, input sequance X, weight-

ing parameters B and C are approximately equivalent to

value V, key K and query Q of self-attention equation. Fol-

lowing [7, 13], Mamba-ST generate B and C from style and

content features respectively. However, this self-attention

solution poses a great challenge of breaking image con-

tent information. In contrast, we design our decoder from a

global convolution perspective. As Mamba is demonstrated

effectiveness of building long-range dependency to main-

tain image content details [8], we explore to introduce style

information without breaking image content details by a

global convolution operation on content feature. So we de-

sign a novel style-aware S6 block (S7 block). Specifically,

we predict convolution kernel A and channel-wise scale

factor D from style embeddings. This introduces style in-

formation to hidden state updating to acquire style selectiv-

ity. Besides, inspired by dynamical weights scheme [4, 9],

The style-aware convolution kernel A and channel-wise

scale factor D strike a great inference efficiency. In ad-

dition, to sufficiently utilize style information and flexibly
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Figure I. Qualitative comparison with MambaST.



Content Style SaMam (Ours) Mamba-ST

Figure II. Qualitative comparison with MambaST.



adapt to various styles, we further design SConv, SAIN and

SCM in our Style-aware VSSM (SAVSSM).

(2) Zigzag Scan and Local Enhancement: Mamba-ST

implements cross scan without maintaining spatial continu-

ity. In contrast, we utilize zigzag scan to capture the con-

tinuity. Moreover, a local enhancement module is intro-

duced to ease local pixel forgetting and channel redundancy.

These 2 designs are able to promote generation quality with-

out introducing heavy overhead during inference, thereby

maintaining efficiency.

We further report the quantitative comparison of the 2

mamba-based methods. As shown in Table I, our SaMam

outperforms Mamba-ST in terms of content and style qual-

ity. In addition to generation quality, our SaMam also main-

tains efficiency, which is highly practical for real-world ap-

plications. Finally, qualitative comparison is provided in

Fig. I and Fig. II. It can be observed that Mamba-ST pro-

duces lower perceptual quality. For example, Mamba-ST is

not able to capture sufficient color from style images (e.g.,
Fig. I). Moreover, it face problems of preserving content

details (e.g., the 3rd scene in Fig. II) and reproducing style

local geometry (e.g., the 5th scene in Fig. II).

3. More Comparison with SOTA
3.1. Effective Receptive Field Comparison

We conduct ERF comparison with different methods.

Specifically, we first randomly select 50 content images and

50 style images, then resize the size to 256 × 256. With

the images above, we generate 2500 stylized results. Fi-

nally, we visualize averaged effective receptive field (ERF)

of the center pixels. The ERF visualization corresponding

to content and style images are shown in Fig. III. It can be

observed that CNN based methods achieve larger ERF for

content images but introduce excessively unbalanced style

ERF. As Transformer based backbone is applied to capture

long-range dependency, it achieves balanced ERF for style.

However, Transformer based methods is not able to achieve

larger ERF for content. This is because that the content

features are input as query patches Q. And there is no in-

formation interaction between the query patches in infer-

ence stage, resulting in narrow ERF for content. Moreover,

Reversible-NN based method is also difficult to achieve

larger ERF. In contrast, our Mamba based method achieves

global ERF in terms of content and style.

3.2. More Visual Comparison

In Fig. IV, we demonstrate additional qualitative compar-

isons with state-of-the-art methods. It can be observed that

our method is able to maintain content details and repro-

duce sufficient style patterns to stylized images. In contrast,

other methods manipulate the content structure, miss style

properties and introduce artifacts in the generated images.

Table II. User study.

Method Content Style Overall

AesPA 92 75 93

S2WAT 116 67 80

CAPVST 57 88 94

Zstar 15 40 20

StyleID 53 72 57

MambaST 26 53 29

SaMam (Ours) 641 605 627

3.3. Content Leak

The content leak issue usually occurs in the stylization pro-

cess because details in image content may not be suffi-

ciently captured [2]. This type of artifact is easy to spot

by human eyes after repeating several rounds of the same

stylization process. We conduct experiments on this is-

sue. The results are shown in Fig. V and Fig. VI. It can

be observed that Diffusion based method StyleID [5] grad-

ually evolves to style while losing content details exces-

sively. As for CNN based method AesPA [10], the con-

tent structures generated after the first round are damaged

(e.g., the first scene in Fig. V). Although the Reversible-

NN based method CAPVST [11] and Transformer based

method S2WAT [12] maintain global content structures, the

stylized effect is also not satisfying (e.g., messy stylized im-

age details in Fig. VI). Moreover, the mamba based methods

(our SaMam and Mamba-ST [3]) are also good at preserv-

ing content structures. And our SaMam further maintain

content details and produce more harmonious style textures.

It’s clear that SaMam effectively mitigates the content leak

issue.

3.4. User Study

As a subjective task, users’ preference is crucial for our

method. We further conduct a user study. In the study, a

single sample consists of a content image, a style image,

and 7 corresponding stylization results generated by the 10

methods. We randomly select 25 content images and 25

style images to generate 25 samples for each user. For each

sample, a user is asked to judge from 3 aspects: content

(content fidelity), style (global color and local pattern simi-

larity) and overall preference. Then the user votes for the

one that he/she likes the most. Finally, we collect 1000

votes from 40 users. The results are shown in Table II. It

can be observed that our SaMam gains best user preference.

4. Model Analysis on Network Architecture
Our model consists of three modules, including con-

tent/style mamba encoder and style-aware mamba decoder.

The mamba encoder consists of successive Vision State

Space Modules (VSSMs). And the decoder consists of sev-

eral Style-aware Vision State Space Groups (SAVSSGs).
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CNN based methods Transformer based methods Reversible-NN 
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Figure III. The Effective Receptive Field (ERF) visualization. The first row is the ERF of content, while the second row shows the ERF of

style.

Table III. Ablation study on model architectures.

Method
Encoder Decoder

C E N
Metrics

VSSMs SAVSSMs SAVSSGs ArtFID ↓ FID ↓ LPIPS ↓ CSFD ↓
A1 4 2 2 256 512 16 26.739 18.113 0.3990 0.2990
A2 1 2 2 256 512 16 29.722 19.839 0.4263 0.3165

B1 2 4 2 256 512 16 26.411 17.986 0.3911 0.2750
B2 2 1 2 256 512 16 29.130 19.668 0.4094 0.3187

C1 2 2 4 256 512 16 26.288 17.855 0.3942 0.2735
C2 2 2 1 256 512 16 28.570 18.947 0.4323 0.2936

D1 2 2 2 512 512 16 26.302 17.914 0.3906 0.2710
D2 2 2 2 128 512 16 27.953 18.295 0.4487 0.2815

E1 2 2 2 256 768 16 26.292 17.942 0.3880 0.2723
E2 2 2 2 256 256 16 27.462 18.460 0.4112 0.2802

F1 2 2 2 256 512 32 26.671 18.193 0.3896 0.2838
F2 2 2 2 256 512 8 28.427 18.330 0.4706 0.2917

Ours 2 2 2 256 512 16 26.305 17.946 0.3884 0.2703

Specifically, each SAVSSG consists of Style-aware Vision

State Space Modules (SAVSSMs). We conduct experiments

to study the effect of the model capacity for these modules.

Specifically, we first develop six model variants (A1-C2 in

Table III) by deepening or lightening these modules. As we

can see, our method does not obtain consistent performance

gains as the encoders and decoder are deepened. However,

our default setting produces significant gains rather than the

lightweight model variants.

Moreover, we set image feature channel number C, ex-

panded dimension size E and SSM dimension N to 256,

512 and 16 in our SaMam. We further conduct experi-

ments to investigate the effect of the parameters (D1-F2

in Table III). It can be observed that our method achieves

notable performance gains compared with D2, E2 and F2.

When continuing to increase C and E, the model gains lim-

ited increase (i.e., D1 and E1). Moreover, F1 even suffers

from performance drop when increasing N . Consequently,

C = 256, E = 512 and N = 16 are adopted as the default

setting, which achieves the accuracy-efficiency balance.
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