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Supplementary Material

1. Preliminaries
Diffusion formulation. We review fundamental concepts
essential for understanding diffusion models, specifically
denoising diffusion probabilistic models (DDPMs). Gaus-
sian diffusion models define a *forward noising process*
that progressively corrupts real data x0 by adding Gaus-
sian noise. This process is expressed as q(xt|x0) =
N (xt;

√
ᾱtx0, (1−ᾱt)I), where the constants ᾱt are prede-

fined hyperparameters. Using the reparameterization trick,
samples can be generated as xt =

√
ᾱtx0 +

√
1− ᾱtϵt,

where ϵt ∼ N (0, I). The objective of diffusion models is
to learn a reverse process that denoises xt to reconstruct
x0. This reverse process is modeled as pθ(xt−1|xt) =
N (µθ(xt),Σθ(xt)), where neural networks predict the
mean µθ and covariance Σθ. The model is trained by maxi-
mizing the variational lower bound [2] on the log-likelihood
of x0. The training objective simplifies to L(θ) =
−p(x0|x1) +

∑
t DKL(q

∗(xt−1|xt, x0)||pθ(xt−1|xt)) ex-
cluding a constant term irrelevant for training. Since both
q∗ and pθ are Gaussian, the KL divergence DKL can be ef-
ficiently computed using their means and covariances. To
simplify training, µθ can be reparameterized as a noise
prediction network ϵθ. In this formulation, the model
minimizes the simple mean squared error (MSE) between
the predicted noise ϵθ(xt) and the ground truth noise ϵt:
Lsimple(θ) = ||ϵθ(xt) − ϵt||22 However, when learning the
reverse process covariance Σθ, optimizing the full KL di-
vergence term becomes necessary. We train ϵθ with Lsimple
and separately train Σθ using the full variational loss L.
Once the model pθ is trained, new samples can be gener-
ated by initializing xtmax ∼ N (0, I) and iteratively sampling
xt−1 ∼ pθ(xt−1|xt) using the reparameterization trick.

Classifier-free guidance. Conditional diffusion models
incorporate additional input information, such as a text
prompt ctext. In this scenario, the reverse process is ex-
pressed as pθ(xt−1 | xt, ctext), with both ϵθ and Σθ condi-
tioned on ctext. To guide the sampling process towards gen-
erating samples x that align strongly with ctext, classifier-
free guidance can be employed [1]. Using Bayes’ rule, we
have: log p(ctext|x) ∝ log p(x|ctext)− log p(x),. By inter-
preting the output of diffusion models as the score function,
the DDPM sampling procedure can be guided to sample x
with high p(x | ctext) using: ϵ̂θ(xt, ctext) = ϵθ(xt, ∅) + s ·
∇x log p(x|ctext) ∝ ϵθ(xt, ∅)+s·(ϵθ(xt, ctext)−ϵθ(xt, ∅))
where s > 1 represents the guidance scale (with s = 1
recovering standard sampling). To evaluate the diffusion

model with ctext = ∅, we randomly drop out ctext during
training and replace it with a learned ”null” embedding ∅.
Classifier-free guidance is well-known for producing sig-
nificantly improved samples compared to generic sampling
techniques [1, 4], and this trend is consistent with our mod-
els.

2. Analysis of Point Number
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Figure 1. We analyze our method’s average FID, KID(×104),
GPU memory and trainingg speed under various numbers of sam-
pled points.

The number of point clouds significantly impacts the
richness of the 3D information. Figure 1 analyzes how the
number of sampled point clouds affects FID, KID, GPU
memory, and training speed. Using the farthest point sam-
pling method [3], we extract between 50 and 15,000 points
from the mesh surface, leading to the following observa-
tions: 1) As the number of points increases, both FID and
KID initially decrease, indicating enhanced texture quality
due to richer 3D information. Beyond a certain threshold,
these metrics stabilize, suggesting that further increases in
point density provide diminishing returns and the perfor-
mance approaches convergence. 2) GPU memory and train-
ing time per iteration consistently increase as the number of
points increases, reflecting higher computational demands.

Balancing performance improvements against training
costs, we determined that sampling 5,000 points per mesh
achieves an optimal trade-off.

3. Additional Results
In order to further showcase the effectiveness of our
method, we present additional results in Figure 2. The
generated results further validate the effectiveness of our
method. The texture produced by our approach is detailed
and realistic, aligning closely with the text descriptions.



the garment is a royal blue princess gown, adorned 
with delicate lace and embroidery

a casual denim dress with button-down front and 
rolled-up sleeves, for a laid-back style

a dress with ethnic prints, incorporating colors 
from diverse cultures

light blue denim shorts with distressed details and 
rolled cuffs

an ethereal, ivory lace and silk evening gown 
with delicate floral lace overlay on the bodice

a pair of black jeans

Figure 2. More garment textures generated by our method.
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