
Appendix for
The Devil is in Low-Level Features for Cross-Domain Few-Shot Segmentation

Yuhan Liu, Yixiong Zou∗, Yuhua Li, Ruixuan Li
School of Computer Science and Technology, Huazhong University of Science and Technology

{yuhan liu, yixiongz, idcliyuhua, rxli}@hust.edu.cn

Figure 1. Samples of the Pascal VOC 2012 dataset.

Figure 2. Samples of the FSS-1000, Deepglobe, ISIC, and Chest
X-ray datasets.

A. Detailed Dataset Setups
Following the settings in PATNet [11], we use PASCAL
VOC 2012 [5] with SBD augmentation [7] as source domain
for training. Sampled images can be found in Fig. 1. Then
we evaluate the trained models on four target domains: FSS-
1000 [12], Deepglobe [4], ISIC [3, 14], and Chest X-ray [1,
9]. Sampled images can be found in Fig. 2.
FSS-1000 [12] is a natural image dataset for few-shot seg-
mentation, comprising 1,000 natural image categories, each
containing 10 samples. Following the official split for se-
mantic segmentation, our experiments evaluate performance
on the designated testing set, which includes 240 classes and
2,400 images.
Deepglobe [4] contains densely annotated satellite images
spanning seven categories: urban, agriculture, rangeland,
forest, water, barren, and unknown. The dataset contains
5,666 images, each resized to 408× 408 pixels.
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ISIC [3, 14] focuses on lesion images for skin cancer screen-
ing, with each image featuring a single primary lesion. The
dataset comprises 2,596 images, all resized to 512 × 512
pixels.
Chest X-ray [1, 9] is a dataset of X-ray images for Tuber-
culosis diagnosis, comprising 566 images with a resolution
of 1024 × 1024 pixels. These images are sourced from 58
Tuberculosis cases and 80 normal cases.

B. Sharpness-Aware Minimization(SAM)
In our work, we use the sharpness of loss landscape as an
entry point to explore the connection between shallow lay-
ers and early stops, and propose a novel sharpness-aware
minimization method to flatten the loss landscapes for low-
level features. Following the previous work [6, 17], we
present a detailed introduction to sharpness-aware mini-
mization(SAM).

Consider a family of models parameterized by w ∈ W ⊆
Rd, the core idea of SAM is to seek parameters w that lie
in neighborhoods with uniformly low loss values, rather
than focusing solely on parameters with low individual loss
values.

Define the training set loss LS(w) and the population
loss LD(w). The goal of model training is to select model
parameters w having low population loss LD(w). Accord-
ing to PAC-Bayesian Generalization Bound Theorem:

For any ρ > 0 and any distribution D, with probability
1− δ over the choice of the training set S ∼ D,
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where n = |S|, k is the number of parameters and we
assumed LD(w) ≤ Eϵi∼(0,ρ)[LD(w + ϵ)].

Eq. 1 can be simplified as:

LD(w) ≤ max
∥ϵ∥2≤ρ

LS(w + ϵ) + h(∥w∥22/ρ2), (2)
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where h : R+ → R+ is a strictly increasing function (under
some technical conditions on LD(w)).

The right-hand side of the inequality above can be rewrit-
ten as:

[ max
∥ϵ∥2≤ρ

LS(w+ϵ)−LS(w)]+LS(w)+h(∥w∥22/ρ2), (3)

The term in square brackets, i.e. max∥ϵ∥2≤ρ LS(w +
ϵ)−LS(w) quantifies how rapidly the training loss increases
when moving from w to a nearby parameter value, which is
termed sharpness. Therefore, the right-hand side of Eq. 1
can be viewed as sharpness, the training loss value itself,
and a regularizer on the magnitude of w. In other words,
the optimization goal of SAM is to seek parameter values by
simultaneously minimizing loss values and loss sharpness.

C. Centered Kernel Alignment(CKA)
In our ablation study, we use Centered Kernel Alignment
(CKA) [10, 16, 18–20] to measure domain similarity to
demonstrate the effectiveness of LEM. The core idea of
CKA is to compare the inner product matrices of the fea-
ture representations and to center them, removing the bias
introduced by the data’s mean.

Given two feature matrices X ∈ Rn×d1 and Y ∈ Rn×d2 ,
where n is the number of samples, and d1 and d2 are the
dimensions of the two feature spaces, CKA measures their
similarity by comparing the kernel alignment of their inner
product spaces.

First, calculate the inner product matrices for both feature
matrices:

KX = XTX, KY = Y TY (4)
Then, center the kernel matrices to remove the effect of
the mean. For the matrix KX , the centered matrix CX is
obtained by:

CX = KX − 1

n
1nKX − 1

n
KX1n +

1

n2
1nKX1n (5)

where 1n is an n-dimensional column vector of ones, rep-
resenting the number of samples. Similarly, CY can also be
obtained.

Finally, CKA is computed as the following formula:

CKA(X,Y ) =
⟨CX , CY ⟩F

∥CX∥F ∥CY ∥F
(6)

where ⟨CX , CY ⟩F is the Frobenius inner product (sum of
element-wise products of the matrices), and ∥CX∥F and
∥CY ∥F are the Frobenius norms (square root of the sum of
squared elements) of CX and CY , respectively.

D. Compared with Other Domain Generaliza-
tion Methods

Domain Generalization (DG) aims to train models that can
generalize to diverse, unseen target domains, particularly

Table 1. Compared with other domain generalization methods.

Method FSS-1000 deepglobe ISIC Chest X-ray Average

baseline 78.91 40.00 35.49 74.44 57.21
instance normalization 78.39 39.99 36.85 76.27 57.88

amplitude-phase recombination 78.62 39.63 35.53 75.56 57.34
perturbtion 78.72 39.50 35.82 76.77 57.70

ours 78.83 40.05 36.31 78.21 58.35

when target domain data is unavailable during training,
which aligns with the objective of CDFSS. Instance Nor-
malization (IN) [15] normalizes features within each indi-
vidual sample by adjusting its mean and variance. This helps
in reducing style-specific variations, making it particularly
effective in tasks like domain generalization, style transfer
and domain-invariant representation learning. We compare
our LEM with IN in Tab.1 and demonstrate that our LEM
outperforms IN in preserving domain-invariant information
by incorporating randomly synthesized domains. [2] intro-
duced a domain generalization approach based on augmen-
tation, leveraging amplitude-phase recombination to direct
the model’s attention toward the phase spectrum. The re-
sults shown in Tab.1 validate that the random convolution
in our LEM module is a more effective way to simulate dif-
ferent domains. Besides, our method can be seen as a novel
sharpness-aware minimization method. Many existing SAM
methods focus on analyzing loss landscapes in the parameter
space, rather than in the representation space. We compare
our method with directly perturbing low-level features in
Tab.1 and demonstrate the superiority of our approach.

E. Sensitivity Study
As shown in Tab.2 and Tab.3, we investigated the effects of
using our LCM and LEM at various positions in the shallow
layers. We inserted our modules at before stage 1, stage
1 block 1, stage 2 block 1, stage 2 block 2, and stage 2
block 3. The improvement in performance demonstrates the
effectiveness of our modules.

Table 2. The effect of LCM in different shallow layers.

Method FSS-1000 deepglobe ISIC Chest X-ray Average

baseline 78.91 40.00 35.49 74.44 57.21
baseline+LCM(before stage1) 78.84 44.22 38.12 77.93 59.78
baseline+LCM(stage1 block1) 78.91 42.09 36.20 78.14 58.84
baseline+LCM(stage2 block1) 78.17 44.74 37.85 78.13 59.72
baseline+LCM(stage2 block2) 78.51 42.96 37.18 78.74 59.35
baseline+LCM(stage2 block3) 77.67 45.77 37.98 76.95 59.59

Table 3. The effect of LEM in different shallow layers.

Method FSS-1000 deepglobe ISIC Chest X-ray Average

baseline 78.91 40.00 35.49 74.44 57.21
baseline+LEM(before stage1) 78.83 40.05 36.31 78.21 58.35
baseline+LEM(stage1 block1) 78.76 39.26 36.04 77.22 57.82
baseline+LEM(stage2 block1) 78.74 39.35 36.96 76.51 57.89
baseline+LEM(stage2 block2) 78.66 39.95 36.21 75.19 57.50
baseline+LEM(stage2 block3) 78.82 39.81 35.32 75.89 57.46



Table 4. Applying our method to the CDFSS baseline can further
enhance performance.

Method
FSS-1000 Deepglobe ISIC Chest X-ray Average

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
PATNet 78.59 81.23 37.89 42.97 41.16 53.58 66.61 70.20 56.06 61.99

ABCDFSS 74.60 76.20 42.60 49.00 45.70 53.30 79.80 81.40 60.67 64.97
DRA 79.05 80.40 41.29 50.12 40.77 48.87 82.35 82.31 60.86 65.42

PATNet+Ours 78.70 81.20 42.08 47.42 42.80 53.96 74.25 76.60 59.46 64.80
ABCDFSS+Ours 78.42 79.93 44.87 49.56 46.24 54.08 82.10 82.65 62.91 66.56

DRA+Ours 80.92 81.35 44.66 50.89 42.29 50.11 84.28 84.76 63.04 66.78

Figure 3. Our exploration of low-level features also works on ViT.

F. More Validations
F.1. CDFSS methods as the baseline

In Tab.4, we apply our method on CDFSS baselines[8, 11,
13] and observe improved performance, consistent with the
improvement of using FSS as the baseline.

F.2. ViT as the backbone

In Fig. 3, we present the mIoU trend analysis and sharpness
evaluation using ViT as the backbone, demonstrating that
both CNN and ViT encounter similar challenges in cross-
domain tasks. Our analysis and method effectively address
these shared issues.
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