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Interpolation with Non-linear Motion

Supplementary Material

Summary
The supplementary material is organized as follows.
• Section 1 introduces the implementation details of the

proposed method and dataset.
• Section 2 discusses more ablation studies of TimeTracker.
• Section 3 shows more visual results on different datasets.

1. Implementation Details
1.1. Appearance-aware Pixel Cluster
We first present the algorithmic process of Simple Linear
Iterative Clustering (SLIC) [1], as shown in Algorithm 1.
SLIC segments the input image I into N appearance-similar
regions based on the preset number of cluster centers N . To
adapt to different image sizes, we set the number of cluster
centers to N = H

30 × W
30 , meaning each segmented region

is initialized to 30 × 30 pixels. In Sec. 2.1, we conduct an
ablation study on the number of cluster centers.

1.2. Method details
Events chunking method. The bin size of event voxel is set
to 5ms during training. During testing, bin sizes are adjusted
based on pixel displacement speed. Motion trajectories are
obtained by linearly connecting adjacent bins. For high-
speed motion, accuracy improves by reducing the bin size.
Motion-aware Region Segmentation. The motion mask is
generated using a 7×7 kernel closing operation, and super-
pixel regions intersecting with it are selected as templates.
This design ensures the model prioritizes interpolation in
motion areas of the scene.
Refine-Net. Refine-Net is a synthesis-based branch with a
2D U-shape structure consisting of a three-layer encoder-
decoder. Superpixel-based point tracking effectively reduces
the complexity of optical flow while better preserving the
spatial details required for the VFI task. However, in regions
with dynamic textures such as fluids, ensuring accurate mo-
tion estimation is particularly challenging. To address this,
the frame refinement module in our TimeTracker framework
is specifically designed to correct areas with optical flow es-
timation errors, enhancing the overall interpolation quality.

1.3. Datasets Details
It is essential to train and test event-based frame interpola-
tion methods on real-world datasets. Several public datasets
have been proposed, including HS-ERGB [18], BS-ERGB
[19], ERF-X170FPS [12], and HQ-EVFI [14], as shown in
Tab. 1. To ensure the alignment between the RGB camera

Algorithm 1 SLIC
Input: Image I and number of clustering centers N
Output: Region index Ri ∈ {1, N} of each pixel i

1: Initialize cluster centers Ck = [lk, ak, bk, xk, yk]
T by

sampling pixels at regular grid steps S
2: Move cluster centers to the lowest gradient position in a

3× 3 neighborhood
3: Set label l(i) = −1 for each pixel i
4: Set distance d(i) = ∞ for each pixel i
5: while E > threshold do
6: for each cluster centers Ck do
7: for each pixel i in a 2S× 2S region around Ck do
8: if D < d(i) then
9: set d(i) = D

10: set l(i) = k
11: end if
12: end for
13: end for
14: update cluster centers Ck

15: Compute residual error E
16: end while

and the events, HS-ERGB [18] requires the system to be
static and objects of interest should only move in a fronto-
parallel plane at a predetermined depth. BS-ERGB [19]
addresses these issues using a co-axial structure, capturing a
variety of challenging scenes including linear and non-linear
movements. However, the camera frame rate remains low,
resulting in a dataset limited to 28fps, which can lead to
significant occlusions in the scenes. To mitigate this, ERF-
X170FPS [12] employs a higher-speed camera, achieving
a dataset with 170fps, but it faces issues with the misalign-
ment of RGB and events. HQ-EVFI [14] aims to reduce
motion blur and noise by using short-exposure shots with
supplementary lighting, resulting in non-uniform illumina-
tion in some scenes. To address these issues and focus more

Dataset RGB Camera Sensor FPS Characteristics

HS-ERGB[18]
FLIR BFS-U3-16S2C-CS

1440×1080 226
Static cameras;

Predetermined depth

BS-ERGB[19]
FLIR BFS-U3-89S6C-C

4096×2196 42
Challenging scenarios;

Low frame rate

ERF-X170FPS[12]
FLIR BFS-U3-16S2C-CS

1440×1080 226
High diversity of scenarios;

Misalignment of RGB and events

HQ-EVFI[14]
MER2-301-125U3C

2048×1536 142
Low noise and low motion blur;

Uneven lighting in indoor scenarios

CHMD
FLIR BFS-U3-04S2C-CS

720×540 522
High frame rate;

High-Speed Nonlinear Motion scenarios

Table 1. Quantitative results on DSEC benchmark.
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Figure 1. Features of the proposed CHMD. (a) The implementation
of our coaxial imaging system. (b) CHMD includes high-speed
nonlinear scenarios andcollects events that are aligned with high-
frame-rate images at the pixel level.

on extremely high-speed moving targets, we propose a new
evaluation benchmark called CHMD.

First, we constructed a co-optical axis imaging system
comprising an event camera (Prophesee EVK4, 1280×720),
a high-speed camera (FLIR BFS-U3-04S2C-CS, 720×540),
and a beam splitter (Thorlabs BSW26R), as illustrated in
Fig. 1 (a). The beam splitter divides the incoming light
into two equal parts and directs them to the event camera
and the high-speed camera respectively. Additionally, we
provided external trigger signals to the cameras through a
programmable synchronous circuit, enabling precise syn-
chronization of the timestamps of both cameras. Finally, we
achieved pixel alignment between the two cameras through
the stereo rectification process. We collected data at three
frame rates: 100, 300, and 500fps, with a particular emphasis

N = 200 N = 500 N = 2000 N = H/30 × W/30 = 1025
(a) Fixed number of cluster centers (b) Dynamic number of cluster centers

Figure 2. Visual comparison of (a) fixed cluster center numbers
and (b) dynamic cluster center numbers.
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Figure 3. Comparison of different settings for the number of cluster
centers N . N1 and N2 represent the number of cluster centers
calculated based on Sec. 1.1 on the BS-ERGB [19] and CHMD
datasets, respectively, while [50, 200, 500, 1000, 1500] are manu-
ally set fixed cluster center numbers.

on high-speed non-linear moving targets.
The CHMD contains 90 sequences, which includes static

platform nonlinear moving targets (e.g., swinging a stick,
fan rotation, spinning top) and dynamic scenes captured by
rapidly shaking the camera, as shown in Fig. 1 (b).

2. Ablation Study and Discussion
2.1. Number of SLIC Segmented Regions
In SLIC, each cluster center corresponds to an image seg-
mentation region. Fewer cluster centers lead to fewer image
blocks for tracking, reducing computational cost, whereas
more cluster centers increase the number of blocks and com-
putational complexity.

Fig. 2 demonstrates the visual effects of different numbers
of cluster centers, while Fig. 3 quantitatively compares their
impact on the BS-ERGB [19] and CHMD datasets. We
set N ∈ [50, 200, 500, 1000, 1500] for fixed cluster center
numbers and calculated dynamic cluster center numbers
N1 = 640 (BS-ERGB: 970× 625) and N2 = 323 (CHMD:
592 × 536) based on the resolutions of the datasets. The
results show that as the number of cluster centers increases,
both PSNR and SSIM metrics improve; however, the rate
of improvement diminishes while the computational cost
rises significantly. The dynamically calculated cluster center
numbers, N1 and N2, are near the inflection point of the
curve, striking an effective balance between computational
cost and accuracy.
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Figure 4. Visual comparison of the point tracking module of TimeTracker and other SOTA methods on the TAP-Vid-DAVIS benchmark.

2.2. Comparison of Point Tracking Results

Comparison Methods. To validate the effectiveness of the
point tracking module in TimeTracker, we compare it with
five SOTA point tracking methods, including three frame-
based methods: TAP-Net [3], TAPIR [4], and Cotracker [11],
as well as two event-based methods: EV Tracker [15] and
MotionPriorCM [9]. All methods are evaluated on the TAP-
Vid-DAVIS [3] benchmark, which includes 30 real-world
sequences and provides accurate point tracking annotations.
For event-based methods, we use ESIM [5] to convert images
into events as input. All methods are fine-tuned on TAP-Vid-
Kubric [3] data. The image sequence is provided with a one-
frame interval to simulate high-speed nonlinear scenarios.

Evaluation Metrics. We follow the evaluation metrics
adopted by existing methods [3, 4, 11]: (1) Occlusion Ac-
curacy (OA, average position accuracy of visible points and
binary occlusion accuracy), (2) δx (The positional accuracy
is calculated only for frames where the points are visible).
δxavg averages across 5 thresholds: 1,2,4,8, and 16 pixels,
and (3) Average Jaccard (AJ, measuring jointly geometric
and occlusion prediction accuracy). The images are resized
to 256× 256 before calculating δxavg and AJ.

Qualitative and Quantitative Results. Fig. 4 and Tab. 2
show the quantitative and qualitative results on the TAP-Vid-
DAVIS benchmark. Please note that since object motion in
the TAP-Vid-DAVIS dataset is relatively slow, each input
frame skips the next two frames to simulate high-speed mo-
tion. Frame-based methods TAP-Net [3], TAPIR [4], and
Cotracker [11], even when capable of correctly tracking the
positions of points at different times, produce tracking tra-
jectories resembling polylines due to the lack of inter-frame
information. The event-based methods EV Tracker [15]
and MotionPriorCM [9] tends to suffer from mismatches
between points. In contrast, our method accurately tracks
the motion trajectories of points.

Methods Input AJ ↑ δxavg ↑ OA ↑

TAP-Net [3] Frame 31.5 46.7 76.2
TAPIR [4] Frame 53.4 64.9 84.6

Cotracker [11] Frame 55.2 65.1 85.9

EV Tracker [15] Events — 61.5 —
MotionPriorCM [9] Events — 68.2 —

Ours Events 56.7 71.3 86.2

Table 2. Quantitative results on TAP-Vid-DAVIS benchmark.

Methods Input 7skip 15skip

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

TAP-Net [3] Frame 32.72 0.905 30.43 0.902
TAPIR [4] Frame 34.15 0.917 32.04 0.908

Cotracker [11] Frame 34.72 0.935 32.96 0.924

EV Tracker [15] Events 34.86 0.938 33.94 0.933
MotionPriorCM [9] Events 35.84 0.950 34.47 0.942

Ours Events 37.05 0.957 36.41 0.955

Table 3. Comparison of point tracking methods in the VFI task.

Additionally, we test the results of replacing the point
tracking module in the TimeTracker framework with other
methods. All methods are fine-tuned (50k iterations) and
tested on the GoPro dataset [16]. As shown in Tab. 3, the pro-
posed tracking method delivers the best performance. Note
that, point tracking in our framework is a pluggable mod-
ule, allowing more advanced methods to be integrated in the
future to further enhance the performance of our framework.

2.3. Comparison of Optical Flow Results
Comparison Methods. To validate the effectiveness of the
optical flow module in TimeTracker, we compare it with
five SOTA optical flow estimation methods, including three
frame-based methods: supervised RAFT [17] and Flow-
former [10], unsupervised ARFlow [13], as well as two
event-based methods: E-RAFT [7] (Event-only) and BFLow
[8] (Event-Frame hybrid). All methods are evaluated on
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Figure 5. Visual comparison of the optical flow module of TimeTracker and other SOTA methods on the DSEC flow benchmark.

Methods Input EPE ↓ AE ↓

RAFT [17] Frame 0.79 3.46
Flowformer [10] Frame 0.72 2.73

ARFlow [13] Frame 0.83 3.01

E-RAFT [7] Events 0.90 3.12
BFLow [8] Frame+Events 0.85 2.97

Ours Frame+Events 0.70 2.68

Table 4. Quantitative results on DSEC benchmark.

the DSEC [6] benchmark, which provides both events and
frames along with sparse optical flow ground truth. All
methods are fine-tuned on DSEC [6] data.
Evaluation Metrics. We follow recommendations of DSEC
[6], utilizing EPE (Endpoint Error, the average of the L2-
Norm of the optical flow error) and AE (Angular Error) as
evaluation metrics.
Qualitative and Quantitative Results. Fig. 5 and Tab. 4
show the quantitative and qualitative results on the DSEC
benchmark. It is evident that event-based optical flow estima-
tion results are worse than frame-based methods due to the
sparsity of events, which makes it challenging to establish ac-
curate pixel correspondences between adjacent frames. Our
method circumvents this ill-posed problem by segmenting
the image into small blocks and leveraging continuous-time
tracking, thereby enabling precise dense and continuous time
optical flow estimation.

2.4. Ablation study of the loss function
In Tab. 5, we evaluate the impact of various loss functions on
the final metrics using the GoPro dataset [16]. The baseline
model employs only the reconstruction loss Lrec. The occlu-
sion loss Locc has a negligible effect when used alone. The
tracking loss Ltrack, representing the pretraining of the point
tracking module, and the global optical flow optimization
loss Lflow both significantly contribute to reconstruction
quality. The best performance is achieved when all losses
are combined.

Ltrack Locc Lflow Lrec PSNR ↑ SSIM ↑
✓ 31.57 0.928

✓ ✓ 34.91 0.951
✓ ✓ 31.59 0.929

✓ ✓ 33.87 0.946
✓ ✓ ✓ ✓ 37.13 0.962

Table 5. Ablation study of the loss functions.

3. Additional Results
Additional qualitative results on four different datasets (SNU-
FLIM [2], GoPro [16], BS-ERGB [19] and CHMD) are
shown in Fig. 6. Frame-based methods perform well in
slow-motion scenes, but they tend to produce reconstruction
artifacts and noticeable object errors in fast and complex
motion scenarios due to inaccurate motion estimation. On
the other hand, event-based methods suffer from reconstruc-
tion errors due to the sparsity of events. In comparison,
TimeTracker outperforms state-of-the-art methods in visual
quality on both simulated and real-world datasets.
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