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1. Details on Plane Annotation Generation

In this section, we present more details about our dense
plane annotation generation pipeline on the new benchmark
indoor [18, 20, 21, 23, 24] and outdoor datasets [2, 7, 8, 10,
14, 15, 22]. Figure 1 shows examples of our plane annotation
on different datasets.

Point cloud lifting. For RGB-D datasets containing pre-
cise ground-truth depth maps, we lift depth map to 3D point
cloud for plane fitting. For stereo data such as ApolloScape,
we first transform the disparity map into depth map using
the provided camera baseline and intrinsic parameters, then
lift the depth map and fit planes.

Panoptic segmentation. For datasets without dense se-
mantic instance ground truth, we employ the state-of-the-art
image segmentation approach Mask2Former [4] to obtain
the panoptic segmentation results to assist the plane fitting
process. We leverage their released models pretrained on
ADE20K [25] and Cityscapes [5] to run on our indoor and
outdoor datasets, respectively.

Plane number ranges. We select the obtained masks from
categories likely to contain planar structures into our plane
fitting stage, and perform instance-wise plane fitting. More-
over, we empirically set different plane number range (min-
imum and maximum number of planes) contained in each
mask from either a background stuff or a foreground instance.
For instance, for outdoor scenes we set [1, 2] for roads and
walls, [1, 5] for buildings, and [0, 2] for vehicles. For indoor
scenes, we set [0, 1] for floors and [0, 5] for other furniture.

Plane fitting with RANSAC. We follow previous
works [11, 12] to fit planes with RANSAC. Specifically,
we run RANSAC for 200 iterations for each plane. In each
iteration, we randomly sample three points from the instance
mask to fit a plane hypothesis then compute and record the
number of point inliers over the instance point set. We se-
lect the plane hypothesis with maximum inliers as the final
plane proposal, and use least square algorithm to refit the
plane onto the entire set of its inliers and update its parame-
ter. After getting proposals for each instance independently,
we merge the neighbouring planes from the same semantic
instance if their plane parameters are close to each other.
Please refer to the implementation of [11, 12] for more de-
tails.

Distance-aware fitting error thresholds. Since the geo-
metric scale variation of outdoor data is much larger than that
of indoor scenes, we set a more tolerant fitting error (the av-
erage distance of all inlier points to the fitted plane proposal)
threshold for the distant points while employing RANSAC.
Our motivation is to make the threshold proportional to the
average depth of these points. In this way, close and distant
points are treated in a roughly equal manner. We set 0.05m
as the reference fitting error and 10m as the reference av-
erage depth. Then, the adapted fitting error E of a plane
proposal with an average depth dm, is computed as:

E = max(
0.05 ∗ dm

10
, 0.05) (1)

A plane proposal will be rejected from the RANSAC process
if its average fitting error exceeds the corresponding error
threshold E.

Filtering tiny planes. After RANSAC fitting, we filter out
tiny planes (those smaller than 200 pixels), as they are too
challenging to be reliably detected by our annotation model.

User evaluation on our generated groundtruth. To intu-
itively validate the groundtruth quality of our pipeline, we
have invited 10 volunteers to give rating on the plane seg-
mentation quality from 500 randomly sampled images from
all datasets as good, borderline, or bad. We received ratings
of 84% ‘good’, 15% ‘borderline’, and 1% ‘bad’, verifying
the convincing quality of our generated data.

Limitations on current pipeline. Although achieving de-
sirable annotation quality over most of the scenes, we ac-
knowledge that our current pipeline still exists a few limi-
tations over some scenarios. First, on real-world data, the
depth maps captured by sensors are sometimes incomplete,
leading to missing planar mask annotation in our annotation
since we leverage the point map lifted by depth. Second, the
instance segmentation categories and plane number ranges
are pre-defined prior to plane fitting, leading to some unde-
fined regions on some not-well-defined cases. A potential
solution is to leverage the SOTA segmentation model such
as SAM for open-set segmentation to cover more planes.

2. Details on Our Method
Loss Weights. On the weight coefficients of different loss
terms, we empirically set λc = 2.0 on plane classification,
λm = 5.0 on plane mask for both dice and cross entropy
losses, λnc

= 1.0 for normal classification, λnr
= 5.0 for
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Figure 1. From top to bottom: our annotated ground-truth planes on HM3D [23], 7-Scenes [18], Taskonomy [24], ParallelDomain [8, 14],
ApolloScape [10], Synthia [15] and Sanpo [22] datasets.

normal residual regression, λdc = 1.0 for offset classifica-
tion, λdr = 2.0 for offset residual regression, λpd

= 0.5,
λpn_l1 = 1.0 for pixel normal L1 loss and λpn_cos = 5.0 for

pixel normal cosine distance loss.



Network Architecture. For the use of DINOv2 encoder
and DPT pixel decoder, we follow their official implemen-
tation. On the pixel depth and normal heads, we feed the
pixel features into three consecutive convolutional layers
with ReLU activation except for the output layer for depth
and normal respectively. For the pixel-geometry enhanced
plane embedding module, we first pass the predicted depth
and normal separately to a convolutional layer to derive the
pixel geometric embeddings, then employ cross-attention,
self-attention, and feed-forward network (FFN) between the
plane query embeddings and the obtained pixel geometric
embeddings to obtain the enhanced plane embeddings. This
procedure is similar to the computational manner between
query embeddings and pixel features used in query-based
transformer detectors, as detailed in Mask2Former [4]. Re-
garding normal and offset classification and residual regres-
sion, we use two MLPs which take the instance-level plane
embeddings as input and decode the plane class logits and
residual vector, respectively. To achieve a better trade-off
between precision and computational cost, we decrease ev-
ery embedding layers dimension used in original [4] from
256 to 64, where we do not observe a great impact on plane
reconstruction performance.

Computational overhead. We compare our computa-
tional overhead with PlaneRecTR [17] which shares similar
overall architecture with ours. Under our default setting with
DINO-B as our encoder, our model has 107.8M parameters
and our FLOPS is 285M, whereas PlaneRecTR has 107M
parameters and the FLOPS is 265M. We achieve compara-
ble computational cost while significantly better zero-shot
generalizability compared with this competitive counterpart.

3. Additional Experimental Results and Abla-
tion Studies

In this section, we incorporate more ablation studies to
demonstrate the robustness of our model, including the selec-
tions of exemplar number, the design of disentangled plane
normal and offset used in our system, the robustness of our
model on potential data bias, and the employment of SOTA
monocular depth estimation with RANSAC as a competitive
baseline method.

In-domain evaluation. Besides zero-shot evaluation, we
provide the evaluation results of our model on the validation
split of in-domain datasets (ScanNet [6], Synthia [15]) for
both single-dataset training and mix-dataset training settings.
As shown in Table 1, in both settings, our method achieves
notable improvement for most of the metrics, especially on
planar geometry.

Table 1. In-domain evaluation of both single-dataset-trained
model (denoted as S) and mix-trained model (denoted as M) on
ScanNet [6] and Synthia [15].

Evaluation Dataset Method Plane Segmentation Plane Recall (depth) Plane Recall (normal)
RI(↑) VOI(↓) SC(↑) @0.05m / 1m @0.1m / 3m @0.6m / 10m @5° @10° @30°

ScanNet [6]

PlaneRecTR (S) [17] 0.94 0.68 0.86 27.47 47.94 77.21 49.37 65.83 75.24
Ours (S) 0.94 0.65 0.87 29.62 48.79 74.76 58.18 68.52 73.64
PlaneRecTR (M) [17] 0.91 0.88 0.80 18.01 37.62 75.22 37.69 59.53 72.11
Ours (M) 0.90 0.93 0.78 21.3 40.43 75.5 55.7 66.78 73.64

Synthia [15]

PlaneRecTR (S) [17] 0.99 0.22 0.94 61.52 71.32 73.80 66.46 72.87 75.37
Ours (S) 0.99 0.13 0.97 61.45 77.04 79.92 79.16 81.37 82.20
PlaneRecTR (M) [17] 0.97 0.50 0.87 40.85 50.44 57.38 41.62 52.84 59.54
Ours (M) 0.99 0.17 0.96 49.49 62.61 71.23 67.89 72.48 73.66

Table 2. Quantitative results on employing coupled or disentangled
plane normal and offset on NYUv2 [19] dataset.

Settings Plane Recall (depth) Plane Recall (normal)

@0.05m @0.1m @0.6m @5° @10° @30°

Coupled normal and offset 7.9 17.94 55.76 34.48 46.63 56.61
Disentangled normal and offset 8.54 17.86 55.08 37.29 47.58 57.19

Table 3. Quantitative results on employing different numbers of
normal and offset exemplars on NYUv2 [19] dataset.

Settings Plane Recall (depth) Plane Recall (normal)

@0.05m @0.1m @0.6m @5° @10° @30°

Kn = 14,Kd = 20 8.27 17.98 54.9 36.46 47.18 56.67
Kn = 7,Kd = 10 8.21 17.84 54.67 36.71 47.47 56.67

Kn = 7,Kd = 20 (our default setting) 8.54 17.86 55.08 37.29 47.58 57.19

The use of disentangled normal and offset. In Tab.2, we
show the result of an ablation study that compares between
without disentanglement (using n/d to represent the plane
parameter for classification-then-regression while keeping
all the other proposed modules) and with disentanglement.
It shows that disentanglement brings remarkable improve-
ments in most of the metrics. This verifies the necessity
of applying decoupled representation on normal and offset,
whose physically meanings are distinct.

The selection of normal and offset exemplar numbers.
We then investigate the impact of varying the number of
exemplars on normal and offset in Table 3. One can see that,
our model is generally robust to the selection of Kn and Kd,
where the gaps on different selections are relatively small.
Empirically, changing solely normal or offset exemplars does
not lead to much gain and our default parameters achieve the
best overall performance.

Robustness on the source of plane exemplar. To verify
the robustness on how we obtain the clusters of plane normal
and offsets on classification-then-regression, we conduct
an ablation study by using only 2 indoor and 2 outdoor
datasets, as opposed to using all 10 mixed training datasets,
for clustering the normal and offset exemplars while still
training on the full set of 10 mixed datasets. As shown,
although suboptimal clusters led to a marginal performance
drop, our model still demonstrated clear robustness over the
source of plane examplar clusters.



Evaluation Dataset Cluster source @0.05m @0.1m @0.6m @5° @10° @30°

NYUv2 partial (4 datasets) 7.73 17.2 54.59 37.02 47.56 56.28
full (10 datasets) 8.54 17.86 55.08 37.29 47.58 57.19

@X6w8 Robustness to pixel-level depth and normal pre-
diction. To validate whether bad pixel depth&normal predic-
tion can lead to a performance gap on final plane reconstruc-
tion, We did an ablation study by adding random Gaussian
noise with variation 0.05 w.r.t the original pixel and depth
prediction values. As shown in the following table, there
are only minor changes, demonstrating the robustness of our
framework on depth and normal predictions.

Evaluation Dataset Pixel depth & normal @0.05m @0.1m @0.6m @5° @10° @30°

NYUv2 Adding noise 8.52 17.88 55.04 37.31 47.62 57.21
Model Prediction 8.54 17.86 55.08 37.29 47.58 57.19

The bias introduced by Mask2Former [4] on groundtruth
fitting and model design. One potential concern raised
from our proposed plane annotation pipeline and our frame-
work is that, we use Mask2former’s panoptic segmentation
predictions for instance segmentation then plane fitting dur-
ing groundtruth generation for a couple of datasets, while
our framework is also partially based on Mask2former. This
will introduce bias during both training and evaluation es-
pecially on the datasets whose groundtruth is involved by
Mask2former. To this end, we conduct an ablation exper-
iment, where we use the rest of datasets whose annota-
tion pipeline does not involve Mask2former to train both
the baseline counterpart [17] and our system, which elimi-
nates the effect brought by Mask2former’s involvement on
groundtruth labels. As shown in Table 4, our method still sig-
nificantly outperforms the parallel version of PlaneRecTR,
which demonstrates the robustness of our model on this
potential bias.

Employing SOTA monocular depth estimation and seg-
mentation as a competitive baseline. Inspired by the re-
cent success of foundation models on depth estimation and
image segmentation, we apply the SOTA monocular met-
ric depth estimation methods Metric3D-v2 [9] and Depth-
Pro [1] to get dense pixel-wise monocular depth, and use
Mask2former [4] for panoptic segmentation. Then, we apply
the same RANSAC pipeline as we used on groundtruth plane
generation to fit planes. We regard this as a training-free
baseline which leverages foundation model inputs to tackle
this task. As shown in Table 5, which achieving admissible
performance of these two counterparts, we still beat their
performance by a large margin, demonstrating our advan-
tage over directly applying foundation models to solve this
problem.

Table 4. Quantitative results on training without Mask2former-
produced datasets, then evaluating on NYUv2.

Settings Plane Recall (depth) Plane Recall (normal)

@0.05m @0.1m @0.6m @5° @10° @30°

PlaneRecTR w/o Mask2former data 5.01 13.47 49.29 19.16 36.69 50.77
Ours w/o Mask2former data 7.22 16.37 49.8 33.66 43.68 52.05

Table 5. Quantitative results on training without Mask2former-
produced datasets, then evaluating on NYUv2.

Settings Plane Recall (depth) Plane Recall (normal)

@0.05m @0.1m @0.6m @5° @10° @30°

Metric3D + Mask2former + RANSAC 2.72 6.76 47.02 14.09 34.11 47.56
Depth-Pro + Mask2former + RANSAC 3.61 9.14 47.91 20.11 37.41 49.52

Ours 8.54 17.86 55.08 37.29 47.58 57.19

4. More Qualitative Results
In Fig. 2, we showcase more qualitative results on testing
images from diverse benchmarks or newly sampled in-the-
wild data. Our model consistently demonstrates effectiveness
and robustness across various environments.
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Figure 2. From top to bottom: the plane segmentation and reconstruction visualization of our model on ScanNet [6], ETH3D [16], LLFF [13],
Synthia [15], ParallelDomain [8, 14], OASIS [3] and two in-the-wild images captured by ourselves.
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