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Supplementary Material

This supplementary document is organized as follows:
Sec. 1 outlines the motivation for using VAE and provides
details of the VAE framework.
Sec. 2 elaborates on the details of the frequency-progressive
learning strategy.
Sec. 3 provides the construction of the UHD all-in-one

dataset and details of the experimental setup.
Sec. 4 provides additional visual results and experimental

analysis.
Secs. 5 to 7 provide further discussions on related work, the
limitations of this study, and its broader impacts.

1. More details on the VAE framework

1.1. The motivation for leveraging VAE as a resam-
pling operator

Firstly, for UHD image processing, the high resolution
presents a significant computational challenge compared
to tasks involving regular-resolution images. To address
this, a Downsampling-Restoration-Upsampling paradigm
is commonly employed to reduce the computational load
during the restoration process. However, the use of simple
resampling operators often leads to considerable informa-
tion loss, resulting in reconstructed outputs that lack fidelity.
In contrast, VAE constructs a regularized latent space for
image reconstruction, reducing information loss during the
encoding process compared to other resampling operators.
This approach facilitates more consistent and reliable recon-
structions.

Secondly, for UHD all-in-one image restoration tasks,
in addition to the computational burden imposed by high-
resolution images, the model must also adapt to various
degradation types. VAE handles this by encoding inputs
with different degradation characteristics into a unified, com-
pact latent space, effectively bridging the gap between these
degradations. This simplifies the optimization process of the
restoration network, improving overall performance.

However, directly applying VAE to UHD all-in-one image
restoration tasks still presents three key challenges. First,
while encoding into the latent space significantly reduces
the computational complexity of the restoration mapping,
the encoding and decoding processes of the VAE itself are
not inherently efficient, and can still introduce substantial
computational burdens. Second, although VAE-generated
reconstructions maintain stronger semantic consistency, they
often suffer from the loss of high-frequency details, which is
unacceptable for low-level restoration tasks. Finally, while

VAE’s ability to map different degradations to the latent
space helps reduce the domain gap in restoration mappings,
VAE is trained on image reconstruction tasks using clean
images. As a result, the domain gap during the encoding
process still needs to be addressed.
1. To address the computational efficiency issue of VAE, we

redesigned the VAE module by replacing conventional
convolutions with depthwise separable convolutions and
the original attention mechanism with a lightweight
frequency-domain attention mechanism [31]. This results
in a more lightweight version of VAE, termed Light-VAE,
which is better suited for UHD-IR tasks.

2. To mitigate the high-frequency loss during the VAE en-
coding process, we introduced learnable adapter branches
in both the encoder and decoder. We apply wavelet trans-
form to the outputs at the corresponding scale of the en-
coder, extracting and injecting the mid-to-high frequency
components into the decoder’s adapter. This helps allevi-
ate the loss of high-frequency details.

3. To address the domain gap in the VAE’s encoding of
different degradation types, we incorporate degradation-
aware low-rank prompts into the encoder’s adapter, as
detailed in Section 3.3.1 of the main text. Further details
on the adapter design are provided in the supplementary
materials.

Here, we focus on the details of the adapter design that were
not fully elaborated in the main text.

1.2. Details of adapter interactions
For the ith Encoder, its input is Ei−1 ∈ Rh×w×c1 , and
its output is Ei ∈ Rh

2 ×
w
2 ×c2 . The corresponding adapter

receives the output from the previous scale as the prior,
P (i−1) ∈ Rh×w×3, and applies wavelet transform to it as
follows:
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whereWp denotes pointwise convolution,Ei
pro denotes the

encoder prompt, and E′
i serves as the output passed from the



adapter to the Encoder, which is then combined with the orig-
inal output Ei through summation after applying a zero con-
volution. The component P (i)′

LL represents the low-frequency
downsampling result from the adapter branch, acting as the
prior input for the next-level adapter. Meanwhile, P (i)′

High

corresponds to the high-frequency components, which are
utilized as upsampled high-frequency complementary infor-
mation for the corresponding adapter in the decoder.

In contrast to the encoding process, the decoder progres-
sively increases the spatial scale of the features during the
decoding process. For the i-th Decoder layer, the input is
Di−1 ∈ Rh

2 ×
w
2 ×c2 , and the output is Di ∈ Rh×w×c1 . The

corresponding adapter at this level receives the output from
the previous level’s adapter, P (i−1)

d ∈ Rh
2 ×

w
2 ×3, along with

the high-frequency components from the Encoder adapter,
P

(N+1−i)
High ∈ Rh

2 ×
w
2 ×3×3, where N denotes the total num-

ber of encoder or decoder blocks. The adapter first applies
an inverse wavelet transform on these inputs to reconstruct
P (i) ∈ Rh×w×3, reintroducing high-frequency details into
the spatial domain. This reconstructed output P (i) is then
combined with the Decoder’s output Di through a zero con-
volution layer, initialized with zeros to ensure that the dimen-
sions and characteristics of the features are preserved. This
combination enables smooth integration of high-frequency
details from the adapter with the structural features from the
Decoder. The process can be formulated as follows:

D′
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High ), Di
pro) +Di, (3)

whereWzero is the zero convolution and IWT is the inverse
wavelet transform, and Di

pro is the decoder prompt.

2. More details about the frequency-progressive
learning strategy

2.1. Metric for measuring the differences between
tasks

As shown in Section 3.1, to measure the gap between tasks
under low-frequency and high-frequency conditions, we in-
troduce the metric zti from [27], which is used to quantify
the differences between pretraining and fine-tuning tasks.
The specific definition is as follows:

ẑsij =
1
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1
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Li

(
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)
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Here, θ represents the parameters obtained after pre-training
on task τ j , and θis denotes the parameters after s steps of fine-
tuning on task τ i. Thus, zsij measures the difference between
two tasks by comparing the loss of the updated parameters
after fine-tuning on a new task with the original parameters’
loss. A larger discrepancy between tasks results in a faster
decrease in loss after fine-tuning, yielding a smaller zsij , and

vice versa. To ensure stability, we take the average value
from step s0 to se.

Therefore, we train on one restoration task and then fine-
tune on another, measuring ẑsij to quantify the inter-task
differences, with a smaller ẑsij indicating a greater degree of
difference. The results, as shown in Figure 1(d) of the main
text, reveal that the gap between tasks in different frequency
bands are smaller than those across the full frequency band,
with the gap between low-frequency band being smaller
than those between high-frequency band. This experimental
observation supports the motivation behind our proposed
frequency-progressive learning strategy.

2.2. Details of the Multiple Wavelet Transformation
(MWT)

The formula for a single wavelet transform is given in Equa-
tion (1). By repeatedly applying wavelet transforms to the
low-frequency components, we obtain multi-band decompo-
sition results, which are expressed as Algorithm 1.

The corresponding inverse wavelet transform can be ex-
pressed as follows: For the inverse wavelet transform, it
involves performing an inverse transform on each frequency
band to reconstruct the input. Assuming the inverse wavelet
transform is denoted as IWT, the formula can be expressed
as Algorithm 2.

Algorithm 1 Multiple Wavelet Transform (MWT)

1: Input: F - original input image
2: Output: FMWT - frequency bands after multiple wavelet

transforms
3: Initialize F

(0)
LL = F {Start with original input as the

lowest frequency}
4: FMWT ← ∅ {Initialize the list to store results}
5: for j = 1 to J do
6: Perform (F

(j)
LL , F

(j)
High) = WT(F (j−1)

LL ) {Apply
wavelet transform to get low and high frequencies}

7: Append (F
(j)
LL , F

(j)
High) to FMWT

8: end for
9: Return: FMWT {Return the frequency bands}

3. Experimental Details
3.1. Datasets
We have developed a comprehensive benchmark for eval-
uating UHD all-in-one restoration performance, based on
datasets from UHD-LL [11], UHD-blur [5], UHD-haze [28],
UHD-rain [3], and UHD-haze [22]. Additionally, we con-
structed a denoising dataset, UHD-noise, using 4K images
from [26] as the background.

The distributions of the training and testing sets for all
datasets are shown in Tab. 1. For UHD-Rain, UHD-Snow,



Algorithm 2 Inverse Multiple Wavelet Transform (IMWT)

1: Input: FMWT - frequency bands from MWT, J - number
of wavelet transform cycles

2: Output: Frec - reconstructed image
3: Initialize Frec ← F

(J)
LL {Start with the lowest frequency

component from the last stage}
4: for j = J to 1 do
5: (F

(j)
High)← FMWT[j−1] {Get the high-frequency com-

ponent for the current stage}
6: Frec ← IWT(Frec, F

(j)
High) {Use the previous recon-

structed low-frequency and current high-frequency to
reconstruct}

7: end for
8: Return: Frec {Return the reconstructed image}

Table 1. Dataset details and corresponding tasks.

Dataset Training samples Testing samples Task

UHD-Snow 2,000 200 Desnowing
UHD-Blur 1,964 300 Deblurring
UHD-Rain 2,000 500 Deraining
UHD-LL 2,000 115 LLIE
UHD-Haze 2,290 231 Dehazing
UHD-Noise 2,000 500 Denoising

and UHD-Noise, we sample the training set according to
different scenes, filtering out some repeated scenes while
controlling the training set size to be comparable with other
tasks. For all tasks, the entire testing set is used to better
validate the generalization performance.

3.2. Implementation Details
The number of encoder and decoder layers is set to 3, and the
number of cubic mixer blocks in the latent space restoration
sub-network, from low frequency to high frequency, is set to
[8, 6, 4, 2].

For the first stage, we train Light-VAE on the image
reconstruction task. The initial learning rate is set to 5×10−4,
gradually reduced to 1× 10−7 using cosine annealing [13].
The batch size is set to 16, and the images are randomly
cropped to 256× 256.

For the second stage, we train the UHD-processor on the
image restoration task, keeping the parameters of Light-VAE
frozen. We fine-tune the parameters of the adapter, prompt,
and latent restoration network. The initial learning rate is
set to 8× 10−4, gradually reduced to 1× 10−7 using cosine
annealing [13]. The batch size is set to 6, and the images are
randomly cropped to 512× 512.

3.3. Training procedure
In the first phase, Light-VAE is trained to perform the image
reconstruction task using clean images. The clean input im-
age is denoted as Ih, and the reconstruction result is denoted

as Ir1.
The loss function of a vanilla VAE includes two main

components: reconstruction loss and KL divergence loss.
The reconstruction loss measures the difference between
the decoder’s output and the original input, encouraging
consistency with the input [23]. The KL divergence loss
regularizes the latent space, ensuring representations con-
form to the prior distribution. This regularization enhances
structural coherence and continuity, leading to consistent
reconstructions from similar inputs [30].

We follow this design and the reconstruction loss and KL
divergence loss can be expressed as follows:

Lrec =
1

N

N∑
i=1

∥I(i)r1 − I
(i)
h ∥1,

LKL = DKL(q(z|I)∥p(z)),

(5)

where q(z|Ih) is the approximate posterior distribution of
the latent variable z given the input image Ih, and p(z) is the
prior distribution, typically chosen as a standard Gaussian
distributionN (0, I). The KL divergence DKL measures how
much the distributionq(z|Ih) diverges from the prior p(z).

In addition, we further maintain the frequency domain
consistency of the reconstruction results using the FFT loss,
which can be denoted as:

LFFT =
1

N

N∑
i=1

∥FFT(I(i)r1 )− FFT(I(i)h )∥1. (6)

In the second phase, the parameters of Light-VAE are
frozen, and UHD-processor takes over the image restoration
task. In this phase, the input degraded image is denoted as
Id, which corresponds to the clean image Igt. The output of
this restoration process is the restored image, denoted as Ir2.

We apply both the L1 loss and FFT loss between the
restored image Ir2 and the ground truth clean image Igt,
similarly to the first stage. The expressions for these losses
remain the same, as follows:
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1

N

N∑
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∥I(i)r2 − I
(i)
gt ∥1,
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1

N

N∑
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∥FFT(I(i)r2 )− FFT(I(i)gt )∥1.

(7)

4. More Experimental Results
4.1. More visual comparison results.
The visual results of the all-in-one restoration task for six
types of degradation are shown in Figure 1. From the com-
parison results in the figure, it can be observed that our
method not only achieves the highest PSNR but also pro-
duces the most visually pleasing results. Additionally, some
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Figure 1. A comparison of visual results for six types of degradation removal with other state-of-the-art (SOTA) all-in-one methods.

Pixel space Clean VAE VAE w/ DALP

Figure 2. t-SNE clustering analysis of features from different degradation types. ’Clean VAE’ refers to the VAE trained only on clean images.
The results show that VAE with DALP effectively maps various degradations into a unified and compact latent space, significantly reducing
the feature disparity between different types of degradations.

methods may suffer from mutual interference across differ-
ent degradation types, leading to issues such as brightness
enhancement in deblurring or denoising tasks, or artifacts in
the snow removal task. In contrast, our method effectively
avoids interference between tasks, resulting in consistent
restoration outcomes.

4.2. The visualization analysis of Efficient Adaptive
Prompt Learning

This section provides a visualization analysis of the
Degradation-Aware Low Rank Prompt(DALR) during the

encoding stage and the Degradation-Specific Frequency Se-
lection Prompt(DFSP) during the decoding stage to validate
their effectiveness.

4.2.1. Degradation-Aware Low Rank Prompt
We introduce VAE to transfer the restoration mapping pro-
cess from pixel space to latent space. The compact latent
space not only significantly reduces the feature scale but
also narrows the gap between different degradations, thereby
greatly reducing the computational load and optimization
complexity for the latent-space restoration network. How-
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Figure 3. Ablation visualization analysis of the Degradation-Specific Frequency Selection Prompt (DFSP). We display Fourier magnitude
spectrum residual maps between all results and the ground truth (GT). Input-freq refers to the magnitude spectrum residual between the
Input and the GT. The color gradient from purple to yellow indicates an increasing difference with the GT magnitude spectrum. The results
demonstrate that the integration of DFSP enables adaptive frequency selection and fusion based on degradation type, resulting in the most
consistent spectral outcomes.

ever, since the first stage of VAE is trained for image recon-
struction on clean images (Clean VAE), directly encoding
degraded images leads to a domain gap, which impacts the
encoding results. To address this issue, we introduce the
Degradation-Aware Low Rank Prompt (DALR).

To validate the role of VAE and DALR, we perform a
t-SNE feature clustering analysis. The results, as shown in
Figure 2, indicate that using Clean VAE to encode different
degradations results in more compact features compared to
pixel space. By further introducing DALR, we overcome
the domain gap in the VAE encoding process, achieving
a more compact and unified latent space feature encoding.
This significantly reduces the disparity between features of
different degradations, allowing us to use a simple restoration
network to handle the mapping process for multiple types of
degradation.

4.2.2. Degradation-Specific Frequency Selection Prompt
Since the VAE encoding process often results in the loss of
high-frequency information, leading to a loss of texture de-
tails in the final restoration, we first perform wavelet decom-
position in the encoder stage’s adapter. The high-frequency
components are then injected into the decoder’s adapter to
facilitate high-frequency information injection(HFI).

However, due to the varying frequency bands affected
by different types of degradation—such as low light and
haze primarily influencing the low-frequency components,
while noise and rain primarily affect the high-frequency com-
ponents—simple High-Frequency Injection (HFI) cannot
address these disparities effectively. Therefore, we intro-

duce the Degradation-Specific Frequency Selection Prompt
(DFSP) to enable adaptive frequency selection and fusion
based on the type of degradation.

The visual analysis is shown in Figure 3, where we
compare the spectral residuals between each result and the
ground truth (GT). The results demonstrate that without HFI,
the restoration results suffer significant high-frequency com-
ponent loss. After incorporating HFI, this issue is partially
alleviated, but due to the lack of degradation adaptation,
the effectiveness is not guaranteed across all types of degra-
dation. With the introduction of DFSP, the network can
adaptively fuse frequency bands based on degradation in-
formation, minimizing the spectral difference with the GT
across all degradation types.

4.3. More Ablation Experiments
4.3.1. Comparison experiments of different resampling

methods
We compare our Light-VAE with other resampling methods
(resamplers) in Tab. 2. In this comparison, "Laz3" refers to
Lanczos3, "PS" to pixel shuffle [18], "AE" to autoencoder,
and "LMAR" [24] refers to a learnable resampling opera-
tor. The term "one-stage" refers to end-to-end training of
the resampler and enhancer, while "two-stage" refers to im-
age reconstruction pretraining of the resampler, followed
by freezing it during enhancer training for the restoration
task. To ensure fairness, we kept the total parameters of all
"resampler + enhancer" combinations consistent. The results
demonstrate that our proposed method significantly outper-



forms other resamplers, indicating that the VAE encoded
latent space is both compact and informative, effectively
reducing computational costs while maintaining excellent
performance.

4.3.2. Comparison experiment on Latent restoration net-
work.

To validate the robustness of our proposed method, we con-
duct a comparative experiment using latent-space restoration
networks built with different basic blocks. The experimental
results, as shown in Tab. 3, demonstrate that our proposed
UHD-processor is a versatile framework that consistently
achieves good performance with various latent-space restora-
tion networks. While a slight improvement is observed with
the Restormer block, it introduces additional computational
complexity and inference time. Therefore, balancing effi-
ciency and performance, we choose the Cubic-Mixer as the
basis for our latent-space restoration network.

4.3.3. Further discussions on sequential learning
The comparison results with sequential learning, shown in
Tab. 4 of the main text, are further discussed here. Com-
pared to sequential learning, our method has the following
advantages:

First, we have a clear and defined learning order. While
MIO-IR [10] establishes a rule for the sequential learning —
starting with local degradation tasks like rain removal and
denoising, followed by global degradation tasks like dehaz-
ing and low-light enhancement — this rule is effective but
somewhat ambiguous when it comes to the internal ordering
of tasks within both local and global degradation categories.
Our experimental results indicate that this internal ordering
significantly impacts the performance of sequential learn-
ing. This could be because the learning order is not only
influenced by the type of degradation but also by specific
dataset-related differences. Determining the learning order
through experimental results is not ideal for practical ap-
plications. In contrast, our proposed frequency-progressive
learning strategy (FDPL) has a task-independent learning
order, and the relationships between frequency bands have
clear physical significance. The training results from earlier
stages effectively guide the learning process of subsequent
stages, making our approach more generalizable.

Secondly, for all-in-one tasks, it is essential to avoid con-
flicts between tasks, but it is even more important to uncover
the commonalities among them. Sequential learning meth-
ods, by gradually introducing tasks from fewer to more,
initially isolate tasks to minimize interference. However,
this isolation of tasks also leads to insufficient modeling of
the shared characteristics between different degradations,
with the model only beginning to capture the relationships
between all degradations in the final stage. In contrast, our
FDPL approach learns from all degradations across every fre-
quency band, allowing for better capture of the relationships

Table 2. Ablation on resampling methods.FLOPs are computed
based on an input size of 256 × 256.Inference time is tested on a
4K resolution using an RTX 3090.

Method One Stage Two Stage
Laz3 Bicubic PS AE LMAR Ours

PSNR 22.97 23.18 25.64 25.21 26.32 29.23
SSIM 0.763 0.746 0.832 0.821 0.834 0.874
Params 1.63M 1.62M 1.82M 1.54M 2.89M 1.60M
FLOPs 3.22G 3.24G 3.62G 3.86G 4.82G 4.17G
Runtime 1.04s 1.06s 1.12s 0.99s 1.23s 0.98s

Table 3. Comparison experiment on Latent restoration network.
FLOPs are computed based on an input size of 256 × 256.Inference
time is tested on a 4K resolution using an RTX 3090.

Method PSNR ↑ SSIM ↑ Param ↓ FLOPs ↓ Runtime FS

Restormer 29.28 0.869 4.17M 5.21G 1.21s ✓
NAFNet 29.16 0.872 2.56M 4.12G 1.01s ✓
Cubic-Mixer 29.23 0.874 1.60M 4.17G 0.98s ✓

between degradations, and ultimately leading to improved
restoration results.

Finally, for UHD image restoration tasks, UHD images
contain more high-frequency details, making the restora-
tion of high-frequency components significantly more chal-
lenging than for regular-resolution image restoration tasks.
Therefore, the proposed FDPL, a frequency-progressive
learning strategy from low to high frequencies, is a more suit-
able learning strategy for UHD all-in-one image restoration
tasks.

5. Additional related work

5.1. Variational Autoencoder
The Variational Autoencoder (VAE) is a powerful generative
model that has been widely recognized for its capability to
learn compact representations from high-dimensional data.
Unlike traditional autoencoders that map data to a single
deterministic point in latent space, VAEs implement a prob-
abilistic framework where latent variables are modeled as
distributions rather than fixed points. This probabilistic ele-
ment is central to VAEs, enabling them to produce diverse
new data samples by sampling from these distributions. Es-
sentially, VAEs compress input data into the parameters
(mean and variance) of the latent distribution through an
encoder and then regenerate the original data by sampling
from this distribution via a decoder. VAEs have been suc-
cessfully applied in a variety of fields, including image gen-
eration [2, 6, 9, 19], image compression [1, 4], and anomaly
detection [15, 32].

In recent years, the compact and information-rich latent
space encoded by Variational Autoencoders (VAEs) has in-
creasingly drawn attention for its potential applications. La-
tent diffusion models [17] have leveraged this space to tran-



sition the diffusion process from pixel space to latent space,
significantly boosting the efficiency of image generation.
Old Photo Restoration (OPR) [20] employs a method of
deep latent space translation to reduce the domain gap be-
tween synthetic degradation and real degradation, thereby
enhancing the model’s ability to generalize to authentic old
photographs.

We aim to leverage the favorable properties of the VAE
latent space to shift the restoration mapping process of UHD
restoration tasks from the redundant pixel space to a compact
latent space, thereby reducing computational complexity.
At the same time, a unified latent space helps reduce the
disparity between different degradations, which in turn eases
the difficulty of the all-in-one UHD image restoration task.

5.2. Prompt learning
Prompt learning was initially explored as a method to inte-
grate additional textual inputs, referred to as prompts, into
pre-trained large language models to achieve specific out-
puts [25, 29]. As research progressed, the development of
vision-prompt-based methods expanded, reducing reliance
on textual information and fostering new techniques [8, 21].
In the field of image restoration, systems like ProRes [14]
and PromptGIP [12] utilize additional input images or image
pairs as prompts to specify the restoration tasks for networks.
Similarly, PromptIR [16] and PIP [7] employ a classifier-
based architecture to derive degradation details from images,
using this information as representations for input-adaptive
implicit prompting.

Inspired by these prompt-based learning methods, we
integrate prompt learning into the VAE encoder and decoder.
Based on the differences between the encoding and decoding
processes, we design two types of prompts: a degradation-
aware prompt and a frequency-selective prompt.

6. Limitations
Due to the limited number of real-world datasets available for
UHD image restoration tasks, only the UHD-LL dataset [11]
used in this paper is real, while the remaining datasets are
synthetic. Therefore, constructing more real UHD degrada-
tion datasets is crucial for the field, as it will allow for a more
accurate assessment of the proposed methods’ performance
in real-world scenarios. We will explore the creation of real
UHD datasets in future work.

7. Broader Impacts
Due to the growing demand for high-resolution images
across various industries, UHD image restoration tasks have
become increasingly important. These tasks aim to restore
images degraded by factors such as noise, blur, or low light,
and they are essential in applications like medical imaging,
satellite surveillance, and autonomous driving. Our proposed

method for UHD all-in-one image restoration leverages a
unified approach to address multiple degradation types, sig-
nificantly improving restoration quality and computational
efficiency. However, from a broader societal perspective,
there are potential risks and considerations.

For instance, over-reliance on automated UHD restora-
tion systems could lead to situations where restored images
deviate from true real-world representations, especially in
critical applications like medical imaging or security surveil-
lance. In such scenarios, discrepancies between restored
and actual images could potentially lead to misdiagnoses
or incorrect security assessments. Furthermore, excessive
reliance on automated restoration techniques could reduce
the need for expert interpretation, which might compromise
the quality of decision-making in high-stakes environments.
Therefore, it is important to integrate human expertise into
the restoration pipeline, ensuring that restored images are
used with careful judgment. As this technology evolves,
it will be crucial to strike a balance between automation
and expert oversight to ensure that it benefits society while
minimizing risks.

References
[1] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin

Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. arXiv preprint arXiv:1802.01436,
2018. 6

[2] Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang
Hua. Cvae-gan: fine-grained image generation through asym-
metric training. In Proceedings of the IEEE international
conference on computer vision, pages 2745–2754, 2017. 6

[3] Hongming Chen, Xiang Chen, Chen Wu, Zhuoran Zheng,
Jinshan Pan, and Xianping Fu. Towards ultra-high-definition
image deraining: A benchmark and an efficient method, 2024.
2

[4] Ze Cui, Jing Wang, Shangyin Gao, Tiansheng Guo, Yihui
Feng, and Bo Bai. Asymmetric gained deep image com-
pression with continuous rate adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10532–10541, 2021. 6

[5] Senyou Deng, Wenqi Ren, Yanyang Yan, Tao Wang, Fenglong
Song, and Xiaochun Cao. Multi-scale separable network
for ultra-high-definition video deblurring. In the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
14030–14039, 2021. 2

[6] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 12873–12883, 2021. 6

[7] Hu Gao, Jing Yang, Ning Wang, Jingfan Yang, Ying Zhang,
and Depeng Dang. Prompt-based all-in-one image restoration
using cnns and transformer. arXiv preprint arXiv:2309.03063,
2023. 7

[8] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Visual
prompt tuning. In European Conference on Computer Vision,
pages 709–727. Springer, 2022. 7



[9] DP Kingma. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 6

[10] Xiangtao Kong, Chao Dong, and Lei Zhang. Towards ef-
fective multiple-in-one image restoration: A sequential and
prompt learning strategy. arXiv preprint arXiv:2401.03379,
2024. 6

[11] Chongyi Li, Chun-Le Guo, Man Zhou, Zhexin Liang,
Shangchen Zhou, Ruicheng Feng, and Chen Change Loy.
Embedding fourier for ultra-high-definition low-light image
enhancement. In ICLR, 2023. 2, 7

[12] Yihao Liu, Xiangyu Chen, Xianzheng Ma, Xintao Wang,
Jiantao Zhou, Yu Qiao, and Chao Dong. Unifying image
processing as visual prompting question answering. arXiv
preprint arXiv:2310.10513, 2023. 7

[13] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 3

[14] Jiaqi Ma, Tianheng Cheng, Guoli Wang, Qian Zhang, Xing-
gang Wang, and Lefei Zhang. Prores: Exploring degradation-
aware visual prompt for universal image restoration. arXiv
preprint arXiv:2306.13653, 2023. 7

[15] Adrian Alan Pol, Victor Berger, Cecile Germain, Gianluca
Cerminara, and Maurizio Pierini. Anomaly detection with
conditional variational autoencoders. In 2019 18th IEEE in-
ternational conference on machine learning and applications
(ICMLA), pages 1651–1657. IEEE, 2019. 6

[16] Vaishnav Potlapalli, Syed Waqas Zamir, Salman Khan, and
Fahad Khan. Promptir: Prompting for all-in-one image
restoration. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023. 7

[17] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models, 2021. 6

[18] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016. 5

[19] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 6

[20] Ziyu Wan, Bo Zhang, Dong Chen, Pan Zhang, Dong Chen,
Fang Wen, and Jing Liao. Old photo restoration via deep latent
space translation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(2):2071–2087, 2023. 7

[21] Jiaqi Wang, Zhengliang Liu, Lin Zhao, Zihao Wu, Chong Ma,
Sigang Yu, Haixing Dai, Qiushi Yang, Yiheng Liu, Songyao
Zhang, et al. Review of large vision models and visual prompt
engineering. Meta-Radiology, page 100047, 2023. 7

[22] Liyan Wang, Cong Wang, Jinshan Pan, Xiaofeng Liu, Weix-
iang Zhou, Xiaoran Sun, Wei Wang, and Zhixun Su. Ultra-
high-definition image restoration: New benchmarks and a
dual interaction prior-driven solution, 2024. 2

[23] Ronald Yu. A tutorial on vaes: From bayes’ rule to lossless
compression, 2020. 3

[24] Wei Yu, Jie Huang, Bing Li, Kaiwen Zheng, Qi Zhu, Man
Zhou, and Feng Zhao. Empowering resampling operation for

ultra-high-definition image enhancement with model-aware
guidance. In 2024 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 25722–25731, 2024.
5

[25] Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and
Chen Change Loy. Unified vision and language prompt learn-
ing. arXiv preprint arXiv:2210.07225, 2022. 7

[26] Kaihao Zhang, Dongxu Li, Wenhan Luo, Wenqi Ren, Bjorn
Stenger, Wei Liu, Hongdong Li, and Yang Ming-Hsuan.
Benchmarking ultra-high-definition image super-resolution.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021. 2

[27] Wenlong Zhang, Xiaohui Li, SHI Guangyuan, Xiangyu Chen,
Yu Qiao, Xiaoyun Zhang, Xiao-Ming Wu, and Chao Dong.
Real-world image super-resolution as multi-task learning. In
Thirty-seventh Conference on Neural Information Processing
Systems, 2023. 2

[28] Zhuoran Zheng, Wenqi Ren, Xiaochun Cao, Xiaobin Hu, Tao
Wang, Fenglong Song, and Xiuyi Jia. Ultra-high-definition
image dehazing via multi-guided bilateral learning. In 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 16180–16189, 2021. 2

[29] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Conditional prompt learning for vision-language models.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 16816–16825, 2022. 7

[30] Lei Zhou, Chunlei Cai, Yue Gao, Sanbao Su, and Junmin Wu.
Variational autoencoder for low bit-rate image compression.
In Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pages 2617–2620, 2018.
3

[31] Man Zhou, Jie Huang, Chun-Le Guo, and Chongyi Li.
Fourmer: An efficient global modeling paradigm for image
restoration. In International conference on machine learning,
pages 42589–42601. PMLR, 2023. 1

[32] David Zimmerer, Simon AA Kohl, Jens Petersen, Fabian
Isensee, and Klaus H Maier-Hein. Context-encoding varia-
tional autoencoder for unsupervised anomaly detection. arXiv
preprint arXiv:1812.05941, 2018. 6


	More details on the VAE framework
	The motivation for leveraging VAE as a resampling operator
	Details of adapter interactions

	More details about the frequency-progressive learning strategy 
	Metric for measuring the differences between tasks
	Details of the Multiple Wavelet Transformation (MWT)

	Experimental Details
	Datasets
	Implementation Details
	Training procedure

	More Experimental Results
	More visual comparison results.
	The visualization analysis of Efficient Adaptive Prompt Learning
	Degradation-Aware Low Rank Prompt
	Degradation-Specific Frequency Selection Prompt

	More Ablation Experiments
	Comparison experiments of different resampling methods
	Comparison experiment on Latent restoration net- work.
	Further discussions on sequential learning


	Additional related work
	Variational Autoencoder
	Prompt learning

	Limitations
	Broader Impacts

