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Figure 1. Overview of coordinate frames.

A. IMU-UWB Prototype
We developed a prototype integrating the off-the-shelf
CEVA BNO086 9-axis IMU and Qorvo DW3000 UWB
sensors on a customized board. An ESP32 microcontroller
handles on-board data preprocessing and wireless trans-
mission. The BNO086 operates at 100 Hz, using an on-
board sensor fusion algorithm to output linear acceleration
(gravity-removed) in the sensor’s local coordinate frame FS

and orientation relative to the initial frame. The DW3000
sensors measure 15 inter-sensor distances at an average rate
of 80 Hz, with a customized asymmetric double-sided two-
way ranging protocol. A time synchronization step is ap-
plied, followed by downsampling to align all measurements
to 60 Hz.

B. From IMU Readings to Input Measure-
ments

We follow the calibration procedures described in DIP [2]
and TransPose [6], adapting them to suit the specific char-
acteristics of the sensors used in our system.

Frame Definition IMU reading coordinate frame trans-
formation is essential for aligning IMU data with the model
input requirements. As shown in Fig. 1, the system operates
with four types of coordinate frames:
• Sensor local coordinate frame FS : Each sensor has its

own local frame, resulting in six frames in total.

• Fixed world frame FW : For the BNO086, the fixed world
frame corresponds to the first sensor frame upon power-
up. Each sensor thus has its own FW , totaling six frames.

• SMPL Body-centric frame FM : A single frame per per-
son, defined as Left-Up-Forward in this work. Motions
are described relative to this fixed frame, which is initial-
ized in the T-pose at the start of the motion sequence.

• Respective bone coordinate frame FB : Each bone with
a mounted IMU has its own coordinate frame, giving six
frames in total.

In total, the system consists of 19 coordinate frames:
one body-centric frame, FM , and six groups of three
frames each, comprising FS,i, FW,i, and FB,i, where i ∈
{1, 2, . . . , 6}.

Problem Statement The IMU measures linear accelera-
tion aS in the sensor local frame FS and orientation RWS ,
which represents the rotation matrix that transforms vectors
from the sensor frame FS to the fixed world frame FW .
When applied to a acceleration in FS , aW = RWSaS de-
scribes the acceleration’s representation in FW . The inputs
to the network are bone orientations relative to the body-
centric frame, RMB , and linear accelerations in the body-
centric frame, aM . RMB describes the rotation of each
bone around the axes of the body-centric frame. These
orientations also represent the global poses of the adjacent
joints. To align the IMU readings with the model input, we
need to transform the sensor-local accelerations aS into the
body-centric frame aM , and the sensor-to-world orientation
RWS into the bone-to-body orientation RMB . These trans-
formations are expressed as:

RMB = RMWRWSRSB , (1)

aM = RMSaS

= RMWRWSaS . (2)

The calibration process aims to determine RMW and RSB

to enable these transformations.

Calculation of RMW As shown in Fig. 1, the body-
centric frame FM is established as the Left-Up-Forward
orientation of the initial T-pose at the start of the motion.
The fixed world frame of the BNO086 is defined as the first
sensor frame after power-up. To ensure consistency, we
position all IMUs in the same initial orientation, aligning
their initial sensor frames such that FS,1

init = · · · = FS,6
init =

FW,1 = FW,2 = · · · = FW,6. To simplify computation,
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Figure 2. Ranging transaction with three devices. Timestamps to
resolve time-of-fight are included in the UWB message payload
and thus broadcast to all network participants.

we align the axes of the FS
init and FW with the correspond-

ing axes of FM or use a known transformation. For ex-
ample, we position the IMU with its x-axis pointing left,
y-axis pointing up, and z-axis pointing forward in the real
world. This alignment defines RMW . In cases where FW

is aligned with FM , RMW = I.

Calculation of RSB Next, we mount IMUs onto the cor-
responding body part in arbitrary orientations. The subject
is then instructed to remain still in a T-pose for several sec-
onds. In this pose, the orientation of bone frame relative to
the SMPL body-centric frame is zero, meaning RMB

T-pose = I.
Thus, given the measured average orientation of the IMU in
T-pose, R̄WS

T-pose, we have

RMB
T-pose = RMW R̄

WS
T-poseR

SB , (3)

RSB = inv(RMW R̄
WS
T-pose)R

MB
T-pose, (4)

RSB = inv(R̄WS
T-pose). (5)

C. Ranging Protocol
We implemented an efficient distance matrix ranging
method based on asymmetric double-sided two-way rang-
ing (ADS-TWR) protocol [4]. Compared to the standard
two-way ranging protocol, ADS-TWR minimizes the im-
pact of clock drift and synchronization errors. Fig. 2 illus-
trates an example with three sensors. One sensor is desig-
nated as the initiator and transmits a POLL signal. Subse-
quently, other sensors sequentially act as transmitters, send-
ing POLL signals to the remaining sensors after receiving
POLL signals from all preceding sensors in order. These
POLL signals simultaneously serve as ACK signals for the
previous sensors, streamlining communication. This effi-
cient broadcasting strategy reduces the number of transmit-
ted signals from 45 (calculated as 15 pairs, each requiring

Figure 3. Stacked density plot showing the proportion relative to
the total distribution of LOS availability for inter-sensor distances
across different sensor pairs.

3 transmissions) to just 11. A sequence of timestamps is
recorded during this process to measure the time-of-flight
(ToF), T , between sensor pairs. T is determined using the
formula:

T =
Tround 1 × Tround 2 − Treply 1 × Treply 2

Tround 1 + Tround 2 + Treply 1 + Treply 2
. (6)

The corresponding distance, d, between the sensor pairs is
then calculated as:

d = cT, (7)

where c represents the speed of light in vacuum.

D. Line of Sight Simulation
One challenge in using body-worn UWB sensors for track-
ing inter-sensor distances is body occlusion, which de-
grades measurement accuracy [1]. To address this, we simu-
late line-of-sight (LOS) conditions to learn the distribution
of the occlusion on TotalCapture dataset [5]. The simula-
tion utilizes the SMPL body model [3] to calculate LOS
and non-line-of-sight (NLOS) conditions based on differ-
ent poses. The visibility of each sensor pair is determined
by tracing straight-line paths between them and checking
for intersections with the body mesh. We employ the
Möller–Trumbore intersection algorithm to identify these
intersections. The LOS proportion is then calculated as the
total length of unobstructed (LOS) segments divided by the
entire distance.

Fig. 3 shows a stacked density plot of LOS proportions
across 15 sensor pairs, representing the relative contribu-
tion of each sensor pair to the total distribution of LOS pro-
portions. For a given LOS proportion, the stacked regions
indicate how frequently different sensor pairs contribute to
that proportion. It reveals that pairs such as “lower leg -
pelvis” and “lower leg - head” exhibit consistently low LOS
availability due to frequent occlusion caused by body move-
ment and overlapping limbs. Accordingly, the correspond-
ing distance measurements are unreliable and could not be
effectively used for pose estimation or measurement filter-
ing. This analysis highlights the varying reliability of UWB



Figure 4. Example of the distance error model based on the LOS
proportions for the sensors used in our system.

measurements across sensor pairs, offering guidelines for
weighting measurement uncertainties in our state estima-
tion framework.
Distance Error Model In this work, we simplify the stan-
dard deviation of distance measurements, σd, as a function
of the LOS proportion, l, as follows:

σd =


σmin, if l ≥ τupper,

σkinematics, if l < τlower,

(σmax − σmin)
(τupper−l)
τupper−τlower

+ σmin, otherwise,
(8)

where τupper and τlower are LOS proportion thresholds, and
σmin and σmax represent the minimum and maximum noise
parameters for the distance standard deviation. When the
LOS proportion falls below τlower, the distance measure-
ment is replaced with one derived from kinematics, with an
associated standard deviation of σkinematics. Fig. 4 provides
an example of this model based on our selected sensors.
The parameters may vary depending on the specific sensors
used.

E. Discussions on Predicted Uncertainty
To assess the correctness of the predicted uncertainty, we
analyze the transformed axis-wise relative position error
distributions. We calculate distance errors given predicted
poses and compare them with the distance uncertainty into
which the predicted pose uncertainty is converted. Fig. 5
shows the proportion of frame counts within different con-
fidence intervals. The results indicate that the predicted un-
certainty aligns well with actual errors for smaller devia-
tions, with 85% of predictions falling within 3σ. However,
for larger errors, the predicted uncertainty tends to be un-
derestimated.

Figure 5. Histogram of axis-wise relative position differences, il-
lustrating the alignment between predicted uncertainty and true
errors.

F. Implementation Details
We train the pose estimator using synthesized data from the
AMASS dataset without integrating the state estimator. We
apply noise only to the synthesized distances, while syn-
thesized IMU data remains noise-free. In the state estima-
tor, the process noise covariance Q is determined using Al-
lan variance analysis with a noise propagation model. The
observation noise covariance R1 follows our distance er-
ror model, while R3 is derived from predicted poses via
the unscented transformation. To mitigate overconfidence
in high-error scenarios, we scale R3 by a factor of 10 for
improved stability.

G. Ablation on Shape Estimator
To evaluate the impact of different anthropometric data on
shape estimation, we conduct an ablation study using the
TotalCapture dataset. Table 1 presents the mean absolute
error of the reconstructed T-pose mesh under different sub-
sets of anthropometric inputs. Since circumferences are not
directly observed, their errors remain the highest across all
conditions. Using only height (H) or weight (W) results
in relatively large distance and mesh errors, demonstrating
that these individual measurements alone do not sufficiently

Mean absolute error
Mesh (mm) H (mm) W (kg) D (mm) C (mm)

H 12.10 1.11 3.77 10.62 21.08
W 23.45 58.70 0.28 31.69 16.11
D 6.14 2.67 4.47 0.9 22.62

HW 10.40 1.2 0.19 11.30 13.34
HD 6.30 1.83 4.10 1.34 21.08
WD 4.31 3.37 1.03 1.14 13.26

HWD 4.72 3.89 0.35 2.09 12.76

Table 1. Comparison of reconstructed T-pose mesh errors on To-
talCapture [5] using different sources of anthropometric data.



Figure 6. Cumulative distribution of distance error (left), predicted relative position standard deviation (middle), and joint positional error
(right) for various fusion settings.

constrain body shape. Combining height and weight (HW)
improves shape estimation, leading to slight reductions in
mesh errors. Incorporating inter-sensor distances (D) pro-
vides better constraints on body proportions, further reduc-
ing mesh and distance errors.

H. Ablation on State Estimator

We compare absolute distance error, predicted uncertainty,
and joint positional error across various configurations on
TotalCapture and UIP datasets to evaluate the impact of
different fusion strategies. Fig. 6 (left) illustrates the cu-
mulative distribution of absolute distance errors. Incorpo-
rating IMU and UWB fusion reduces distance errors, and
the addition of pose information further improves accuracy.
This demonstrates that integrating multiple sensing modal-
ities enhances distance estimation by leveraging comple-
mentary information. Fig. 6 (middle) shows the axis-wise
relative position standard deviations, evaluating the effect
of different information on the predicted uncertainty. The
results indicate that the full fusion model, i.e., IMU, UWB,
and poses, improves the consistency of uncertainty estima-
tion, resulting in the most confident predictions. Fig. 6
(right) evaluates the cumulative distribution of joint posi-
tional errors. Compared to the unfiltered case, fusing IMU
and UWB data reduces error, while incorporating pose con-
straints further improves tracking performance. These re-
sults demonstrate that jointly fusing IMU, UWB, and pose
constraints improves distance accuracy, refines uncertainty
estimation, and reduces joint positional errors.
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