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A. Additional Details of Method
A.1. UNO Object Segmentation

UNOSeg is constructed with three steps, i.e., mask proposal
generation, global and local matching, and mask proposal
assignment.

Mask Proposal Generation. Given the query image Iq
and uniformly sampled pixel positions P as prompt, the
segment anything model (SAM) [8, 19] Θ predicts Nm mask
proposals M with confidence scores C, denoted by

M, C = Θ(Iq, P ). (A-1)

We discard low-confidence predictions and apply Non-
Maximum Suppression to filter duplicate proposals.

*Equal contributions.

Global and Local Matching. In the matching stage, the
network assigns each mask proposal a similarity score w.r.t.
the reference view. Specifically, given the reference image,
we first remove the background using Mp, then crop the
region of interest and resize it to Îp ∈ R224×224×3. Con-
currently, we crop and resize the target image with all mask
proposals to a consistent size {Îjq ∈ R224×224×3}Nm

j=1. Îq

and Îp are fed into a pre-trained DINOv2 model [5, 13] to
generate image-level global descriptors Ĝq, Ĝp and Nl patch-
level local descriptors {L̂k

q}
Nl

k=1, {L̂k
p}

Nl

k=1. By evaluating
the cosine similarity of descriptors, the matching score ξ can
be obtained as

ξ = (ξG + ξL)/2, (A-2)

where ξG and ξL are global and local descriptor similarities
calculated by

ξG =
Ĝ⊤
q Ĝp

∥Ĝq∥2 · ∥Ĝp∥2
,

ξL =
1

Nl

Nl∑
k=1

max
i=1,...,Nl

(L̂k
q )

⊤L̂i
p

∥L̂k
q∥2 · ∥L̂i

p∥2
.

(A-3)

Leveraging both global and local matching scores, the net-
work effectively distinguishes the mask proposal most simi-
lar to Mq relative to the reference object.

Mask Proposal Assignment. A single query image may
contain multiple distinct query objects in the test scenario.
In this scenario, we generate mask proposals using Eq. (A-1)
once. For each individual mask proposal, we calculate its
similarity score against every candidate reference and select
the highest score to determine the object class of this mask
proposal. Noteworthy, while the whole image may have
multiple reference images, each distinct target object only
has a single reference image.
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A.2. Details of Eq. (5) in GRF Construction

Here we provide a detailed definition of rGx in the construc-
tion of GRF (c.f . Eq. (5) in the main text). Considering
the vector from the center cQ to a point q ∈ Qcam, given
the normal vector rGz at cQ, its projected vector vq on the
tangent plane of cQ can be computed as

vq = (q− cQ)− r⊤Gz(q− cQ)rGz. (A-4)

Then, the projected vectors of all points are aggregated by
summing them, with each vector being weighted according
to the distance between q and cQ. We decrease the weight
of points that are farther from the center, as they are more
likely to be outliers. Specifically, rGx is calculated as

rGx =

∑
q∈Qcam

wq,1wq,2vq

∥
∑

q∈Qcam
wq,1wq,2vq∥2

,

wq,1 = (sQ − ∥q− cQ∥2)2,
wq,2 = (r⊤Gz(q− cQ))

2,

sQ = max
q∈Qcam

∥q− cQ∥2.

(A-5)

The weighting factor wq in Eq. (5) can thus be expressed as

wq =
wq,1wq,2

∥
∑

q∈Qcam
wq,1wq,2vq∥2

. (A-6)

A.3. Details of Training Objectives

We leverage the InfoNCE [12] loss to constrain the learning
of the correlation matrix and the weighted binary cross-
entropy (WBCE) loss for supervising overlap prediction. In
specific, given the correlation matrix Xc ∈ R(Nc+1)×(Nc+1)

denoting the predicted correspondence between the query
point cloud Qc

G and the reference point cloud Pc
G, it is

supervised with

Lc
X = CE(Xc[1 :, :], ȳq) + CE(Xc[:, 1 :]⊤, ȳp). (A-7)

Here ȳq ∈ RNc

and ȳp ∈ RNc

are the ground-truth corre-
spondence for Qc

G and Pc
G.

The overlap predictions Ôc
Q ∈ R(Nc+1)×1, and Ôc

P ∈
R(Nc+1)×1 are supervised with

Lc
O = WBCE(Ôc

Q, Ō
c
Q) + WBCE(Ôc

P , Ō
c
P ), (A-8)

where Ōc
Q, and Ōc

P are overlap labels for the query and ref-
erence point clouds, respectively. For each point, its ground-
truth overlap ōci , i ∈ {1, ..., N c + 1} is calculated by

ōci =

{
0, if i = 1 or di,min > δ,

1, otherwise.
(A-9)

For the background token (i = 1), the ground-truth overlap
score is constant at 0. Moreover, di,min is the distance of

Method Segmentation VSD MSSD MSPD ARBOP

Oryon Pred 12.1 37.5 41.4 30.3

Ours UNOSeg 69.6 79.1 81.7 76.8

Oryon GT 13.9 42.9 45.5 34.1

Ours GT 73.5 81.7 84.4 79.9

Table B-1. Comparison with Oryon on TYO-L.

the i-th point to the closest point in the counterpart point
cloud under ground-truth transformation, and δ is a hyper-
parameter which we set to 0.15.

Similarly, we calculated Lf
X and Lf

O for supervising the
fine point matching procedure.

To sum up, the overall learning objective can be written
as

L =
∑

t∈{1,2,3}

(Lc,t
X +Lc,t

O )+
∑

t∈{1,2,3}

(Lf,t
X +Lf,t

O ). (A-10)

Here t denotes the block index of the geometric transformer
decoder.

A.4. Details of Hyper-parameters

We empirically set the number of coarse point samples N c

to 196, and the number of fine point samples Nf to 2048.
We sample NH = 300 pose hypotheses in coarse pose pre-
diction. In building the local reference frame, the number
of neighborhoods ND is set to 64. The dimensions for ge-
ometric embedding, color embedding, LRF encoding, and
positional encoding are set to 256.

A.5. Discussion on Handling Symmetric Objects

Currently, UNOPose does not explicitly handle symmetry.
However, the use of DINOv2 [13] visual features can handle
geometrically symmetric but visually distinguishable objects.
Explicitly and effectively handling symmetry holds promise
as a valuable direction for future exploration.

B. More Experimental Results
B.1. Comparison with the Open-vocabulary Setting

on TYO-L

Oryon [4], which proposes an open-vocabulary setting for
object pose estimation, shares similar settings with UNO-
Pose but differs in object segmentation and the pipeline focus.
Specifically, Oryon focuses on segmentation given poten-
tially vague textual prompts and employs an off-the-shelf
method PointDSC [1] for pose estimation. In contrast, UNO-
Pose leverages the GT reference mask to directly identify the
target object and focuses on developing a novel method and
a BOP-based standard benchmark for unseen one-reference-
based pose estimation.
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Figure B-1. Qualitative results in real-world phone-captured scenarios. The first image is the reference for this row. Ground-truth and
predicted poses are colored with yellow and blue accordingly.

Method Modality
In-dataset

fine-tuning

Angular

error (°)↓
Acc30 (%) ↑ Acc15 (%)↑

RelPose [16] RGB ✓ 58.3 26.1 7.0

RelPose++ [9] RGB ✓ 46.6 42.5 15.8

3DAHV [17] RGB ✓ 41.7 61.5 29.9

DVMNet [18] RGB ✓ 36.8 - -

UNOPose* RGB ✗ 49.1 50.0 19.1

UNOPose RGB-D ✗ 23.9 84.2 81.1

Table B-2. Comparison with RGB-based relative pose estima-
tion methods on LM. The depth of UNOPose* is predicted by
ZoeDepth [2].

To compare UNOPose with Oryon, we test on Toyota
Light [7] (TYO-L) with Oryon’s image pairs and present
results in Tab. B-1. This BOP dataset includes 21 objects
captured under diverse lighting conditions and backgrounds.
Tab. B-1 demonstrates the clear superiority of UNOPose
with both GT and predicted segmentations.

B.2. Comparison with RGB-based Relative Pose Es-
timation Methods on LM

Although the setting of UNOPose is different from that of
RGB-based relative pose estimation methods [9, 16–18], we

include a comparison of their test split of the LM dataset [6]
in Tab. B-2. We report the rotation error and the accuracy
with thresholds of 30◦ and 15◦. For comparing our UNO-
Pose with them under RGB modality, we use ZoeDepth [2]
to predict metric depth from monocular data. It is shown that
our method achieves comparable results with relative 3DoF
pose estimators even under RGB modality. Moreover, when
using ground-truth depth, our approach largely surpasses in
terms of rotation metrics. While leveraging more advanced
monocular metric depth estimation techniques could poten-
tially yield better results, it is beyond the scope of this paper,
and we leave it for future work. Additionally, we can esti-
mate translation besides rotation. Note that, for evaluating
on LM, they need to first train on the synthetic data and then
perform in-dataset fine-tuning on the real LM data by ex-
cluding the test objects. However, UNOPose is only trained
on the synthetic dataset and then tested on several real-world
datasets.

B.3. Results on Real-world Scenarios

To verify the practicality of UNOPose, we adopt it in real-
world phone-captured scenarios and present qualitative re-
sults in Fig. B-1. Specifically, we run UNOPose on three
sequences of daily objects (banana, detergent, and kettle)
provided by the WildRGB-D dataset [14]. This dataset is



Method VSD MSSD MSPD ARBOP

Ref. AlignCenter (baseline) 31.7 43.4 19.5 31.5

UNOPose 69.2 74.8 63.9 69.3

Table B-3. Reference from different scenes on YCB-V.

Image ID VSD MSSD MSPD ARBOP

751 50.4 74.0 69.5 64.6

3895 51.0 74.7 70.5 65.4

4329 56.1 75.2 72.4 67.9

5274 56.3 76.1 73.5 68.6

7268 54.7 76.7 73.2 68.2

10741 47.1 73.2 69.4 63.2

11430 45.8 67.3 63.4 58.8

9734 36.3 57.3 52.1 48.5

Table B-4. Ablation of the reference selection on “One Ref-
erence per Category” experiments on the “Dragon” object of
TUD-L. 10741 is the image ID we chose in the paper.

photographed in several in-the-wild scenarios by the front
camera of an iPhone. For each sequence, one frame is chosen
as the reference, and the rest frames are treated as queries.
The SAM-based masks provided by the dataset are directly
employed. For visualization, we use the 3D bounding box
derived from the reconstructed object and the provided ab-
solute camera poses. Note that our UNOPose requires no
information from the 3D model or the camera poses. Quali-
tative results show that UNOPose can adjust well to in-the-
wild scenarios, daily objects, varying lighting conditions,
low-quality depth, and occasional occlusions.

B.4. More Ablation studies

Reference from Different Scenes. Compared to previ-
ous methods, UNOPose cuts objects out of the background,
eliminating reliance on scene context. Our approach allows
reference images to originate from diverse scenes and be
captured by different cameras. We additionally present the
evaluation results for all references from different scenes on
YCB-V [15] and show the results in Tab. B-3. Compared
to the baseline, UNOPose achieves a notable 37.8% im-
provement in accuracy, demonstrating its robust adaptability
across changing scenes.

Selection of Single Reference. In the main text, we con-
duct the “One Reference for a Category” experiment. To
explore the effect of reference selection on the results, we fur-
ther conduct ablations on the dragon object from the TUD-L
dataset [7]. Specifically, we sampled 8 different viewpoints
from TUD-L, ensuring a rotation difference of at least 40
degrees between any two viewpoints. This sampling strat-
egy allowed the references to cover the object’s full range

Num. Ref. VSD MSSD MSPD ARBOP

1 54.4 63.7 64.1 60.7

8 53.4 65.9 65.6 61.6

12 61.3 74.2 74.0 69.8

16 62.5 74.3 75.4 70.7

32 62.8 76.2 75.7 71.6

42 60.7 75.0 74.8 70.0

Random 61.9 75.2 75.9 71.0

Table B-5. Ablation on the total number of references in a
dataset (TUD-L). We randomly select a certain number of ref-
erences for each category on the TUD-L training set (denoted as
Num. Ref.). “Random” is the setting in main experiments, indi-
cating randomly selecting a reference for each query object. The
reference selection policy is consistent with the main text.

Method SAM-Real SAM-Ren FastSAM-Real FastSAM-Ren

APAvg 54.2 51.7 51.6 49.5

Table B-6. Ablation on segmentation with rendered reference
images. We report the average mAP on LM-O, YCB-V, and TUD-
L.

of perspectives. The further “one reference per category”
experimental results are shown in Fig. B-2 and Tab. B-4. It
is shown that image IDs 751, 3895, 4329, 5274, and 7268
achieve better results than the viewpoint we chose in the
paper (image ID 10741, ARBOP 63.2). However, when using
11430 or 9734 as the only reference image of the category,
they gain sub-optimal results. Qualitative and quantitative
results show that the reference with brighter illumination and
larger visible regions can lead to better results.

Impact of Reference Number. We further dig into the
influence of references’ numbers on the whole dataset and
present the results in Tab. B-5. The number of references
(Num. Ref.) that equals 1 corresponds to the experiment in
Tab. 3 of the main text, and “random” indicates randomly
selecting a reference for each query object. Note that UNO-
Pose still runs with only one reference for each query. We
find that the best performance is achieved with 32 references
and competitive results can be observed after the total refer-
ence number of each object increases to 12. Impressively,
even with just one reference for each object in the entire
dataset, the results remain excellent (comparable to using
8 references). It indicates that UNOPose does not rely on
multiple references at the dataset level.

Segmentation with Rendered References. In the main
experiments, we employ real-world reference images for
segmentation comparison, which exhibits a smaller domain
gap than compared methods [3, 10, 11]. However, we
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Figure B-2. Different reference selection experiment on TUD-L. Each image is chosen as a reference for all test data in the dragon
category. The results w.r.t. ARBOP metric are shown in the picture.

aim to show that our one-reference UNOSeg is competi-
tive with model-based multi-reference methods, not to set a
new SOTA. We opt to use a real reference image instead of a
rendered one, as the latter would require a 3D model. For fair
pose estimation comparison, we use consistent segmentation
results from UNOSeg. Replacing the real reference with
the rendered version slightly lowers UNOSeg’s performance
(See Tab. B-6), but the absence of template retrieval makes
our results reasonable compared to CAD-based methods.

B.5. Qualitative Results

We show some qualitative results on YCB-V, LM-O, and
TUD-L datasets in Fig. B-3. Despite occlusion, sensor noise,
and varying testing scenarios, our generic approach achieves
robust unseen object pose estimation results with one single
reference image.

C. Potential Positive and Negative Societal Im-
pacts

We developed UNOPose for estimating unseen object poses
given a single RGB-D reference image. By avoiding the
need for retraining and reducing the cost of creating refer-
ences for each new object, UNOPose can not only reduce the
environmental burden but also offer more application possi-
bilities. This technology has broad applications in industrial
manufacturing and robotic manipulation. While it may lead
to job displacement due to increased automation, we aim for
this work to have a positive societal impact by enhancing
efficiency and safety.
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