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Supplementary Material

A. CAT3D-like model details

This section provides more details for the CAT3D-like
model used in Sec. 4.2. CAT3D [19] is a diffusion model
which takes as input a set of Ntgt target cameras and a set
of Nsrc source views with cameras, and aims at generat-
ing the views associated with the target cameras. Since
the code is not available, we follow the implementation de-
tails of [19] to reproduce a model with similar capabilities.
Specifically, starting from a pre-trained text-to-image latent
diffusion model similar to [48], we first modify all 2D self-
attention layers in the decoder part of the denoising UNet
such that 2D self-attention is performed across all the views
in the batch. First proposed by [53], this cross-view atten-
tion allows each image token to attend to tokens of all views
in the batch, thus improving multi-view consistency. Then,
we modify the architecture with zero-initialized channel ex-
pansion such that it can take as input the latent features con-
catenated with mask maps indicating source views and cam-
era maps in the form of Plücker rays. Different from [19],
we use the v-prediction / v-loss parametrization [49] and the
zero terminal SNR noise scheduling recommended by [37]
as we found it to work better than the original CAT3D
recipe. For all experiments, we use Nsrc = 3, Ntgt = 5 and
train for 100k iterations using Adam [30] optimizer with a
constant learning rate of 1e�5 and a global batch size of 64.

For evaluation, we follow standard practices [19, 67] and
report results on common out-of-distribution NVS datasets
(RealEstate10K, LLFF, DTU, Mip-NeRF 360) using the
same test splits. We evaluate novel-view synthesis in the
3-view input setting and report LPIPS and PSNR metrics.

B. Text-to-3D model details

The text-to-image stage of the Instant3D-like model from
Sec. 4.3 is based on an internal text-to-image model archi-
tecturally similar to Emu [11]. Starting from a model pre-
trained on a dataset of image-caption pairs, we fine-tune the
model on 4-view canonical-render grids of uCO3D objects.
In all our experiments we use the Adam optimizer [31] with
a batch size of 160 and a constant learning rate of 1e�5.
We distribute the training across 32 NVIDIA A100 GPUs
for a total of 20k steps. During inference, we use a Diffu-
sion Probabilistic Model (DPM) Sampler [40] and denoise
over 60 steps. The 4-view-to-3D stage of the Instant3D-
like model is based on LightplaneLRM [6]. For the Light-
planeLRM model which reconstructs both the central ob-
ject and the scene background, we use the coordinate con-
traction of MERF [46] which non-linearly maps the distant
parts of the scene so they always fall into the [-1,1] bound-

ing cube of the utilizied triplane representation. The rest of
the training procedure follows the LightplaneLRM protocol
described in Sec. 4.1.

We train three different versions of both the Instant3D-
like model and LightplaneLRM, each version correspond-
ing to a different dataset. Specifically, we train on a dataset
of synthetic assets similar to Objaverse [13], and on two
versions of uCO3D, one that contains background and one
where the background information is masked. For evalua-
tion, we report the FID metric [25] for the models trained on
datasets without background information (Tab. 4). The eval-
uation sets corresponding to the Surreal and Real prompts
are created by randomly selecting 50 image frames for ev-
ery scene/prompt pair. We center the objects of the uCO3D
images using the per-frame mask information for consistent
evaluation across all datasets. The generated 3D objects of
the text-to-3D model are rendered from sampled cameras
drawn from the camera distribution of each individual eval-
uation set. The qualitative results presented in Fig. 8 are
extracted using the model variants trained with background
information.

C. Rigid scene alignment

In Sec. 3, we described a procedure that estimates a rigid
transform for each object to align it to dataset-wide object-
centric reference. Here, we provide additional details.

We start with finding the gravity axis by making sure the
roll of the cameras is close to 0, following [57]. Then, we
translate and scale the densified point cloud ((b) in Fig. 3)
so that the median locations along the horizontal axes are 0,
and so that the STD of its points’ coordinates is 1. Then, we
normalize the 2D rotation in the horizontal plane by align-
ing the principal components, and, finally, shift the object
vertically to make the ground plane’s elevation zero. As
shown in the experiments, this normalization allows ren-
dering each object from 4 canonical viewpoints defined in
the object-centric reference, which eventually enables the
Instant3D-like text-to-3D model training.
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