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Supplementary Material

In this supplementary material, we provide more details on
our implementation and experiments as follows.
• Section A: More details on dataset partitions;
• Section B: More details on implementation;
• Section C: Additional experiments;
• Section D: Qualitative results and failure case analysis;
• Section E: Limitations and future work.

A. Dataset Partitions

To evaluate the generalization capability for online HD map
vectorization, we conducted experiments on the geospatial
disjoint (geo-based) dataset partitions. Here are some statis-
tical analyses of the datasets. Table A1 shows the number
of samples and overlap ratios for the original and region-
based data partitions. Compared to widely-used original
splits, region-based partition divides datasets according to
the geographic location with lower overlap rates, with 11%
for nuScenes [1] and 0% overlap for Argoverse2 [5], which
are measured for all locations within a 30m radius around
the ego-vehicles. For the city-based partition following [3],
Table A2 shows the city-based distribution of the training
and validation data. All dataset partitions are maintained on
roughly the same scale as the original ones, in which Ar-
goverse2 is resampled by 1/5 (2Hz) to be consistent with
nuScenes dataset.

Split Train # Val. # Overlap Ratio

nuScenes
Ori. 27968 6019 85%

Region 27846 5981 11%

Argoverse2
Ori. 21794 4704 54%

Region 23434 4676 0%

Table A1. Data collections on region-based partitions.

nuScenes Argoverse2

City Sample # City Sample #

Train
Boston,

Onenorth 25926
Miami,

Pittsburgh 21975

Val
Queentown,

Holland Village 8056
Austin, Detroit

Washington 9232

Table A2. Data collections on city-based partitions.

B. More Implementation Details

This section introduces the detailed settings of pre-trained
perspective-view (PV) detection branches, including the
training process and the transformation of the ground truth
of PV-level detection.

B.1. Settings of PV Detection Branch

As described in the main paper, we introduce the pre-trained
PV detection branch for explicit structural priors. In the
design of the PV branch, given the total number of I im-
ages captured by the onboard cameras, we utilize the shared
ResNet50 [2] backbone followed by the FPN [4] neck to
extract multi-scale image features. Then, a multi-layer
uncertainty-aware (UA) decoder is employed to detect map
elements, in which we replace the original Deformable-
DETR [6] with the UA-decoder design to take considera-
tion of reliable PV coordinate output and uncertainty infor-
mation, which will be further deployed in our UI2DPrompt
module. We trained the model on four A100 GPUs with a
batch size of 4, which refers to 4 × I images in one batch.
The learning rate is set to 3e−4 and the PV models are
trained for 24 epochs. The loss setting is similar to the main
branch of the BEV map, which contains Lpv

nll fused with the
loss of the point regression Lpv

pts to produce uncertainty of
the Laplace distribution and stabilize the coordinate output,
in addition to Lpv

cls for classification. Thus, the PV loss can
be formulated as below:

Lpv
map = λpv

ptsL
pv
pts + λpv

nllL
pv
nll + λpv

clsL
pv
cls, (1)

where the corresponding loss weights λpv
nll, λ

pv
pts, and λpv

cls are
set to 0.05, 50.0, and 5.0, respectively.

B.2. Ground Truth for PV Detection

Since the map annotations are labeled in the bird’s-eye-view
(BEV) space, the PV map labels are obtained through the
projection of the BEV map ground truth. Given map ground
truth at the ego-coordinate system (px, py), map polylines
are transformed into the image-coordinate system with 2D
coordinates (xpv, ypv) by camera extrinsic Tego2cam and in-
trinsic Kcam, which can be formulated as:
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zcam
· Kcam ·P3D
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where P3D
cam is the first three dimension of Ph

cam. The depth
of the camera coordinates zcam is used for normalization
when projecting a point from the 3D space (camera coor-
dinate system) onto the 2D image plane. Furthermore, the
corresponding PV map elements are cropped and filtered
according to the depths and range of images.

C. Additional Experiments
C.1. More Ablation Studies
In this section, we demonstrate more ablations on the se-
lection of hyper-parameters. All experiments are conducted
with the utilization of mimic query distillation.
Ablations on the Uncertainty Loss Weight. In Table A3,
we conduct ablations on the selection of λnll for uncertainty
head loss. It can be observed that the best performance is
achieved when the hyperparameter λnll is set to 0.05. Exces-
sive or insufficient weights may cause imbalances in learn-
ing, thereby affecting the model’s performance.

λnll APped APdiv APbou mAP

0.00 39.2 30.6 44.4 38.1
0.02 40.7 30.7 45.0 38.8
0.05 40.3 30.8 46.8 39.3
0.07 40.1 29.8 45.1 38.9
0.10 39.5 30.1 45.3 38.3

Table A3. Ablations on the λnll of Lnll for UA-Head output.

Ablations on Threshold Selection. To examine the selec-
tion scheme for PV instances, we conducted ablations on
the various settings of cthr in our UI2DPrompt design. As
an uncertainty output, a larger cthr indicates higher selec-
tion standards. Excessive or insufficient threshold selection
may lead to the loss of critical features or the introduction
of redundant information. As shown in Table A4, the best
performance of 39.3 mAP is obtained with cthr = 0.4.

cthr 0.2 0.4 0.5 0.6

mAP 39.0 39.3 38.8 38.6

Table A4. Ablations on threshold selection.

D. Visualization
D.1. Visual Comparisons
On region-based splits, Figure A1 and Figure A2 present
additional visual comparisons on nuScenes validation set.

In Figure A1, uncertainties are presented as circles of dif-
ferent sizes. The larger circle represents a lower confidence
in its prediction. As shown in the fifth sample, the larger
uncertainty is observed in the FRONT-RIGHT view of the
image, mainly due to occlusions caused by the car. Com-
pared to the previous method, our UIGenMap performs bet-
ter with lower uncertainties, particularly for road bound-
aries and pedestrian crossings. Figure A3 and Figure A4
present more qualitative visual comparisons on the region-
based Argoverse2 dataset.

D.2. Scene-level Video Demo
We further provide a video demo named “demo.mp4”
to demonstrate the performance of our model at the scene
level. The video contains several typical driving scenes of
nuScenes and Argoverse datasets.

D.3. Failure Case Analysis
Despite having greatly improved the quality of generaliz-
able HD map construction, both the visual and numerical
results show that there is still a large gap in the requirement
for real-world deployment. In Figure A5, we provide some
visual examples of failure cases.
Occlusion. As shown in Figure A5 (a), static map elements
can be repeatedly occluded by dynamic objects on the road,
which may cause a limited field of view and inadequate de-
tection of key elements of the road.
Ambiguous Annotations. Figure A5 (b) presents an exam-
ple of annotation errors. A left-turn junction can be seen
on the front- and front-left-view of the PV images, which is
unlabeled in the ground truth.
Low-light Conditions. For night driving and other low-
light conditions, PV images cannot provide enough seman-
tic and structural information. As shown in Figure A5 (c),
it is hard to capture detailed road structures, so there is po-
tential for further enhancement.

E. Limitations and Future Work
Limitations. Considering the generalization capability, the
performance of learned models is heavily affected by the
scale and diversity of the training data. In this paper, ex-
periments are conducted within the same dataset. So, there
is a lack of extension to generalization studies across dif-
ferent datasets. More strategies like modality fusion, data
augmentation, and different modeling strategies for map el-
ement representation can be utilized for stronger general-
ization capability. Within the limited training data, per-
formance on unseen driving scenarios remains constrained,
which poses significant challenges for deployment in real-
world applications.
Future work. In the future, further explorations are re-
quired to improve the generalization of map construction,
particularly under adverse conditions such as rain, clouds,



and fog. In addition, the impact of different sensor mod-
els and placements on generalization must be addressed.
For practical industrial applications, it is crucial to develop
larger datasets and benchmarks that include a wide range
of locations and scenarios. These resources would enable
models to better manage the variability and complexity of
real-world driving conditions.
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Surrounding Views with PV Detection StreamMapNet Ours GT

Figure A1. Visual Comparisons on region-based nuScenes validation set with PV detection result. Circles represents the point-based
uncertainty, larger circle means less confidence for model’s prediction. Our approach achieves better performance with less uncertainty.



Surrounding Views with PV Detection StreamMapNet Ours GT

Figure A2. Visual Comparisons on region-based nuScenes validation set with PV detection result, in which our approach achieves better
performance.
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Surrounding View Images StreamMapNet Ours GT

Figure A3. Visual comparisons on region-based Argoverse2 validation dataset. Our UIGenMap emphasizes stronger generalized ability.
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Surrounding View Images StreamMapNet Ours GT

Figure A4. More visual comparisons on region-based Argoverse2 validation dataset.
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Failure Case (a): Occlusion

Failure Case (b): Ambiguity in Annotation

Failure Case (c): Low-light Condition

Surrounding Views with PV annotations

Surrounding Views with PV annotations

Figure A5. Visualization of Failure cases. (a): Occlusion by dynamic objects; (b): Wrong calibration and annotations in pubulically used
dataset; (c): Driving at night with low-light condition.
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