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A. Supplementary Explanation of Method

A.1. Differences with Previous Methods

The success of Masked Image Modeling (MIM) has in-
spired its extension to the video domain as Masked Video
Modeling (MVM), which has demonstrated impressive per-
formance for multiple video tasks.

Given a video V' = {v; € RFXWXCLT | “early MVM
methods [8-10, 25, 27-29] aim to train the video encoder f
through dense sampling from videos and forcing the model
to recover the masked pixels. Specifically, as shown in
Fig. 1a, for a sampled video clip V' C V, V' is divided
into several tubes, which will be masked with learnable
[MASK] tokens at a large probability. Next, the masked
clip is passed through an encoder-decoder structure to pre-
dict the original clip v by recovering the masked pixels.
Finally, the mean square error (MSE) loss is utilized to min-
imize the difference between V7 and V':
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where M is the set of [MASK] tokens.
Recent MVM methods [7, 11, 14, 30] have shifted to
a random sampling strategy to reduce computational cost
in the early efforts. Typically, as shown in Fig. 1b, these
methods first sample a current frame v, € V with sev-
eral masked patches, then sample an unmasked past frame
v, € V. The masked current frame v, are restored to v,

using v, as prior information based on a conditional de-
coder. Similarly, the mean square error (MSE) loss is used
to minimize the difference between v, and v..:
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As discussed in Sec.l, the random sampling strategy
introduces uncertainty in reconstruction since one single
conditional frame can lead to multiple potential predic-
tions. Besides, previous MVM methods primarily restore
the masked regions at the pixel level, making the model re-
tain excessive low-level information. To address these is-
sues, as shown in Fig. Ic, we propose a framework named
T-CoRe with two key properties: 1) a sandwich sampling
strategy to establish temporal correspondence from aux-
iliary frames, thereby reducing the reconstruction uncer-
tainty; 2) an auxiliary branch on top of a self-distillation
structure to reconstruct the masked patches in the latent
space, facilitating the capture high-level semantic represen-
tations. Following the detailed illustration in Sec.3, we
employ CE loss for representation reconstruction and MSE

loss for temporal squeezing:
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where p?, pf are the restored representations of the current
frame guided by the past and future frame, respectively, and

P is the representation from the teacher branch.

B. Detailed Description of Experiments

B.1. Training Datasets

Kinetics-400 [16] is a large-scale video dataset with 400
categories of daily actions, widely used for tasks like action
recognition and video understanding. It includes 239,789
available training videos, each about 10 seconds long. We
extract frames at F'P.S = 2 to create our training set.

ImageNet-1k [5] is a widely used large-scale static im-
age dataset containing 1,000 categories, covering a broad
range of real-world objects. The training subset consists of
1.28 million images in the training subset, which we use to
pre-train our framework.
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(c) Structure of T-CoRe (Ours).

Figure 1. Comparison of structures between our framework with previous MVM methods.

B.2. Evaluation Datasets and Metrics

DAVIS-2017 [21] is a benchmark dataset for video object
segmentation. The following three metrics are commonly
used to evaluate the overall segmentation performance.

1) J., measures the average region similarity by calculat-
ing the overlap between the predicted segmentation mask
P; and the ground truth mask G; for each video V:
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2) Fum accesses the average contour accuracy by calculating
the harmonic mean of the precision Pre; and recall Rec;
for the predicted boundary of each video V;:
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3) J & Fm provides a comprehensive measure by averaging

Jm and Fiy:
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JHMDB [15] is primarily used for action recognition
and human pose estimation. In our work, we use it for the
human pose propagation task, which is evaluated using the
PCK@F metric to measure the precision of predictions:
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where S; is the set of key points and d; is the scale of the
human body in video V;, D(p; ;, p; ;) represents Euclidean
distance between predicted key point p; ; and ground truth
key point p; ;. The parameter k is the threshold for the
maximum allowable distance error. Following previous
works [7, 11, 14], we use PCK@0.1 and PCK@0.2 as eval-
uation metrics.

VIP [32] is designed for fine-grained instance parsing,
which can be applied to the semantic part propagation task.
The primary evaluation metric is mIoU, which measures the

segmentation performance by calculating the overlap be-
tween the predicted segmentation mask P; ; and the ground
truth mask G ; for each video V; and each class C;:
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B.3. Training Settings

Sampling strategy. For each video, we first randomly se-
lect a current frame within the range [0.3,0.7] of the total
video duration. Then, we randomly sample the past and fu-
ture frames relative to the current frame based on the offset
range of [0.15, 0.25]. Moreover, we generate 2 global views
(224 x 224) and 8 local views (96 x 96) from the current
frame, applying standard data augmentations such as color
jittering, gray scaling, and Gaussian blur. Following [19],
50% of the global crops in the student branch are masked
with 10% to 50% of randomly selected patches.
Optimizing settings. We adopt ViT-Small and ViT-
Base [0] with a patch size of 16 as the backbone models
in our framework. The feature dimensions are set to 384
and 768, respectively. For the ViT-S/16 backbone, we pre-
train our framework for 400 epochs with a batch size of
256, where the first 20 epochs are allocated for warm-up.
For the ViT-B/16 backbone, we pre-train our framework for
200 epochs with a batch size of 128, with the first 10 epochs
used for warm-up. The base learning rate blr for ViT-S/16
and ViT-B/16 are adaptively set to 2 x 1072 and 1 x 1073,
respectively, and decay to 1 x 1075 using a cosine decay
schedule. The real learning rate [r is scaled according to
the batch size: Ir = bir - \/bs/1024. The learning rates for
PMM are set to 0.1 x Ir for ViT-S/16 and 0.13 x Ir for ViT-
B/16. The student branch is optimized by AdamW [18] and
the teacher branch is updated with the exponential moving
average of the student weights.
Loss function. The hyper-parameters of the loss function
are set as follows: \; = 0.8, Ao = 20, \3 = 1.0, and \y =
0.1. Note that A3 and )4 are taken from the default setting
of [19] and we only tune the A; and )\, in our experiments.
The general hyperparameters settings for our T-CoRe



‘ Value
Notation ‘ ViT-S/16 ViT-B/16

Hyperparameter

Sampling strategy

Current frame range / [0.3,0.7]
Past frame offset range [a, B] [0.15,0.25]
Future frame offset range [a, B] [0.15,0.25]
Mask probability / 0.5
Mask ratio / [0.1,0.5]
Global crop size / (224 x 224)
Local crop size / (96 x 96)
Past and future frame size / (224 x 224)
Optimizing settings
Optimizer / AdamW
Learning rate scheduler / Cosine
Weight decay / 0.04 — 0.4
Momentum / 0.992 —+ 1
Number of ViT encoder blocks / 12
Patch size P 16
Base learning rate blr 2x 1073 1x 1073
PMM learning rate / 0.1 x1Ir 0.13 xIr
Epochs / 400 200
Warm-up epochs / 20 10
Batch size bs 256 128
Number of ViT feature dim. d 384 768
Loss function
Weight of reconstruction loss A 0.8
Weight of squeezing loss A2 20
Weight of DINO loss A3 1
Weight of koleo loss g 0.1

Table 1. The hyperparameters settings for our T-CoRe framework
during the training process.

Config DAVIS-2017 VIP JHMDB
Top-K 7 10 7
Queue Length 20 20 20
Neighborhood Size 20 20 20

Table 2. The hyperparameters settings for our T-CoRe framework
during the evaluation process.

framework during the training process are summarized in
Tab. 1. All experiments in this work are conducted with
Pytorch [20] on a Linux machine equipped with an AMD
EPYC 9654 96-Core Processor and 4 NVIDIA 4090 GPUs.

B.4. Evaluation settings

Following [7], the hyperparameters for three downstream
tasks are listed in Tab. 2. Note that these hyperparameters
remain fixed in our framework without further tuning to en-
sure a fair comparison.

B.S. Competitors

We compare our T-CoRe with various state-of-the-art self-
supervised representation learning methods, which can be
categorized into the following two types:

1) Contrastive learning methods:

* SimCLR [3] aims to learn meaningful representations by
contrasting positive and negative samples.

* MoCo v3 [4] designs a momentum encoder with a mem-
ory bank to store negative samples.

* DINO [2] uses a self-distillation structure to learn repre-
sentations with Vision Transformer [6] as the encoder.

+ ODIN? [13] combines object discovery with representa-
tion networks to capture meaningful semantics without
annotation.

* CrOC [24] proposes a cross-view consistency objective
with an online clustering mechanism for semantic seg-
mentation.

2) Masked modeling methods:

* MAE [12] proposes to mask and recover image patches at
the pixel level based on an encoder-decoder structure.

* MAE-ST [8] extends MAE to learn spatiotemporal repre-
sentations from videos.

* RC-MAE [17] introduces a mean teacher network into
MAE for consistent reconstruction.

* VideoMAE [25] simply extends MAE into the video do-
main by masking video tubes with an extremely high
masking ratio and recovering the masked pixels.

* DropMAE [29] applies adaptive spatial-attention dropout
to enhance temporal relations in videos

* SiamMAE [11] uses a past frame and a masked current
frame as input to a Siamese network, reconstructing the
masked patches with a conditional decoder.

* CropMAE [7] samples different crops or augmented ver-
sions of a frame as input to a similar structure with
SiamMAE.

» RSP [14]learns to recover a future frame through stochas-
tic frame prediction, using the current frame for prior and
posterior distributions.

* iBOT [31] aligns both cross-view [CLS] tokens and in-
view patch tokens within a self-distillation framework.

* DINO v2 [19] employs a discriminative self-supervised
pre-training approach and incorporates additional tech-
niques [1, 22, 23, 26] to improve iBOT. For a fair compar-
ison, we do not apply the costly techniques in DINO v2
like distillation from a larger model or pre-training with a
larger resolution.

C. Additional Experimental Results
C.1. Training Dynamics

Fig. 2 illustrates the performance dynamics of the training
schedule for ViT-S/16 and ViT-B/16 backbones across three
downstream tasks. We report the performance of the frame-
work at different checkpoints during the training process.
The figures indicate that training with a larger model and a
longer duration leads to further performance improvements
on these downstream tasks.
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Figure 2. The performance on three downstream tasks during the training phase with ViT-S/16 and ViT-B/16 backbones.

C.2. Computational Efficiency

Our framework (VIT-B/16 backbone) is pre-trained on 4
GPUs for 200 epochs with bs=128 in 30 hours. As shown
in the Tab. 3, we provide a comparison of model effi-
ciency. Although the self-distillation architecture intro-
duces a slight computational overhead, our method achieves
superior performance on downstream tasks with fewer
training epochs, while maintaining relatively acceptable
time and space costs, thus seeking a balance between com-
putational efficiency and model effectiveness.

Method Backbone | GPUMem. Epoch PT-Time | 7&Fm Jm Fm
VideoMAE ViT-B/16 | 8x24.39 GB 800 160 h 347 339 354
SiamMAE ViT-B/16 | 4x5.04 GB 400 21h 455 436 475
CropMAE ViT-B/16 | 4x5.02GB 400 22h 57.8 569 58.7
RSP ViT-B/16 | 4x12.19 GB 400 113 h 60.5 57.8 632
T-CoRe (Ours) ViT-B/16 | 4x17.57GB 200 30h 664 64.6 68.2

Table 3. Efficiency comparison on ViT-B/16 with same settings.
C.3. Additional Visualization Results

Cross-attention Maps. We provide additional cross-
attention heatmaps of the masked patches between the cur-
rent frame and both the past and future frames in PMM.
As shown in Fig. 3, the masked patches could success-
fully match similar regions in the auxiliary frames through
the cross-attention mechanism, demonstrating the favorable
ability to establish temporal correspondence. This capabil-

ity remains effective in perceiving and matching the corre-
sponding targets even when the target is almost completely
masked in the current frame. Moreover, it is worth noting
that PMM can also capture edge details, such as the outline
of the rope in the top-right example.

Downstream Tasks. In Fig. 4, we provide more visu-
alization results on three downstream tasks. The prediction
masks show that T-CoRe performs well in instance segmen-
tation and posture tracking across most scenarios, making it
an effective pre-training framework for video representation
learning that facilitates the video understanding process.

C.4. k-NN Images for Pre-training on ImageNet-1k

To ensure a fair comparison with previous methods in the
image domain, we extend our framework for pre-training
on the ImageNet-1k [5]. Specifically, we employ k-NN im-
ages to simulate the adjacent frames in videos for estab-
lishing temporal correspondence. In this setting, the auxil-
iary branch receives one k-NN image. The k-NN images
are determined based on our framework pre-trained without
the auxiliary branch, where k is set to 5 at default. Fig. 5
presents several examples of original images and their cor-
responding k-NN images, which exhibit similar appearance
and share the same semantics as the original images, ef-
fectively simulating the selection of adjacent frames from a
video to establish correspondence.
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(b) Human Pose Propagation on JHMDB (c) Semantic Part Propagation on VIP

Figure 4. Additional visualization results of T-CoRe for three downstream tasks including (a) video object segmentation on DAVIS-
2017 [21], (b) human pose propagation on JHMDB [15], and (c) body part propagation on VIP [32].



Figure 5. Examples of £-NN images for pre-training on ImageNet-1k. The images within the blue boxes in the first column are the origin
images, while the following 8 columns show their top-k nearest neighbor images in the training set.

Figure 6. Failure cases on downstream tasks.



C.5. Failure Case Analysis

As shown in Fig. 6, obvious prediction errors occur in
some challenging test samples, such as tightly fitting in-
stances, considerable motion amplitudes, and significant
camera movements. These failures likely result from the
limitations in the training data processing, which prevents
the model from learning such difficult scenarios. This issue
could be mitigated by using higher-quality datasets, more
precise sampling methods, and smaller patch sizes for train-

ing.

In future work, we will consider further enhancing the

framework to better handle more complex scenarios.
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