
Shape and Texture: What Influences Reliable Optical Flow Estimation?
Supplemental Material

Libo Long, Xiao Hu, Jochen Lang
EECS, University of Ottawa

{ llong014, xhu008, jlang}@uottawa.ca

1. Optical Flow Update due to Shape Changes

1.1. Upscaling

Our dataset contains upscaled shapes in Flow-R-S. In this
section, we will give the derivation of Equation 8 in Section
3.

Given that we have upscaled the objects (x) in frames
I1 and I2, it is necessary to rescale the optical flow by re-
projecting each point from I1 to align with the new positions
in frame I2 inside the upscaled area x↑.

The upscaling is performed based on the common cen-
ter of the bounding boxes of the object x and its upscaled
counterpart x↑. Let c1 = (cx1 , c

y
1) be the center point of

x in I1. We can determine the corresponding center point
c2 = (cx2 , c

y
2) in I2 by referencing the ground truth of the

optical flow fgt.
Next, for each point (i↑1, j

↑
1 ) in the upscaled object x↑,

we need to identify the corresponding point (i↑2, j
↑
2 ) in Ix

↑

2 .
The new offset is therefore (i↑2, j

↑
2 )− (i↑1, j

↑
1 ).

We proceed by only considering the first coordinate i
for notational clarity. Then, given scale factor θ and cen-
ter point cx1 , i↑1 is found by

i↑1 = cx1 + θ(i1 − cx1) (1)

Thus, we can find the original i1 in I1 by

i1 =
i↑1 − cx1

θ
+ cx1 (2)

We can find the same corresponding relation in I2 by

i↑2 = cx2 + θ(i2 − cx2) (3)

i2 =
i↑2 − cx2

θ
+ cx2 (4)

For each i1, we can find the corresponding i2 with the
flow fgt.

i2 = i1 + fi (5)

where fi is the flow for offset i, in i1 index. Now, we can
calculate the updated flow by

fs
i = i↑2 − i↑1 = cx2 + θ(i2 − cx2)− i↑1

= cx2 + θ(i1 + fi − cx2)− i↑1

= cx2 + θ

(
i↑1 − cx1

θ
+ cx1 + fi − cx2

)
− i↑1

= cx2 + i↑1 − cx1 + θcx1 + θfi − θcx2 − i↑1
= cx2 − cx1 + θcx1 − θcx2 + θfi

= (θ − 1)(cx1 − cx2) + θfi

by adding back the second coordinate j, with fij ∈ x ↑,
we arrive at the updated flow (Equation 8 of the main pa-
per):

fs
ij = θfij + (θ − 1)(cx1 − cx2 , c

y
1 − cy2)

= θfij + (θ − 1)(c1 − c2)

Optical flow for shape attack. In Section 4.1 Experi-
ments - Shape attack, we rescale I1 by θ. Consequently,
the optical flow can be updated using the expression i2 − i↑1
in x↑.

i2 − i↑1 = i1 + fi − i↑1

=
i↑1 − cx1

θ
+ cx1 + fi − i↑1

Hence, in two dimensions, we have

(i2, j2)− (i↑1, j
↑
1 ) =

(i↑1, j
↑
1 )− (cx1 , c

y
1)

θ
+ (cx1 , c

y
1) + fi,j − (i↑1, j

↑
1 )

1.2. General Affine Transformation

In the main paper, we only discuss shape change due to
upscaling as this leads to realistic and significant shape



Figure 1. Screenshot of our APP. (a) GUI of the app. It takes
mouse clicks as input, and pressing the ”Generate Mask” button
will trigger the automatic generation of a pair of masks as shown
in (b) and (c).

changes for many objects, i.e., similar to the object ap-
proaching the camera. Here, we derive the optical flow up-
date due to a general affine transformation which includes
(up)scaling but also rotations, shearing and translations.

• Θ1 ∈ R3×3 and Θ2 ∈ R3×3 are the affine transformation
matrices of the object in the frame 1 and 2, respectively.

• c1 ∈ R2 is the center position of the object bounding box
in frame 1. C1 ∈ R3×3 is the corresponding translation

matrix between the origin and c1. C1 =

1 0 cx1
0 1 cy1
0 0 1


• pt1 ∈ R2 represents a pixel belonging to the object in the

frame 1. t is the pixel index.
• p̂t1 ∈ R2 represents the object pixel pt1 after the affine

transformation in the frame 1.
• fij ∈ R2 is the optical flow for the pixel pt from frame 1

to frame 2. Fij ∈ R3×3 is the corresponding translation

matrix from pt1 to pt2. Fij =

1 0 fi
0 1 fj
0 0 1



• fs
ij ∈ R2 is the optical flow for the object pixel pt after

the affine transformation.
In our setup, all the affine transformations are centered

in the object bounding box. The goal is to calculate the
relationship between fij and fs

ij . pt and p̂t are converted
into homogeneous coordinates for the affine transforma-
tions. The transformation matrix from p̂t1 to p̂t2 can be cal-
culated as:

p̂t2 = C2Θ2C
−1
2 pt2

pt2 = Fijp
t
1

pt1 = C1Θ
−1
1 C−1

1 p̂t1

p̂t2 = C2Θ2C
−1
2 FijC1Θ

−1
1 C−1

1 p̂t1

Considering a scenario when the affine transformations
Θ1 and Θ2 for two frames are the same and don’t contain
any translations. Then, with θ ∈ R2×2 being the non-
translation matrix and I the identity matrix, the above equa-
tions can be simplified without using the homogeneous co-
ordinates as:

p̂t2 = c2 + θ(−c2 + fij + c1 + θ−1(−c1 + p̂t1))

= c2 − θc2 + θfij + θc1 − c1 + p̂t1

fs
ij = p̂t2 − p̂t1

= (I − θ)c2 + θfij + (θ − 1)c1

= θfij + (I − θ)(c2 − c1)

= θfij + (θ − I)(c1 − c2)

2. Occlusion Handling
In this section, we will discuss how to handle the occlusion
for Flow-R.

Occlusion in Flow-R-T. The optical flow of Flow-R-T is
the same as the original flow. To ensure consistency, we use
the ground truth optical flow to warp the new texture from
I2 to I1. Thus, all occluded pixels should be the same.

Occlusion in Flow-R-S. To easily handle the occlusion
area, we only upscale the objects x. Thus, the optical flow
should be recalculated in x↑. To indicate the new occlusion
area, we first create an occlusion map Maskx of x. Then,
we use nearest neighbor interpolation to generate the new
occlusion map for x↑.

Occlusion in Flow-R-O. We use an affine transformation
to represent the motion of the new object from I1 to I2.
In practice, we avoid using rotation and moving out of the
image, as these could generate complex occlusions. Instead,
we only add linear motion, ensuring that each pixel of the
new object in I1 can project to the corresponding pixels in



Figure 2. The pipeline for texture generation.

I2. Thus, there is no occlusion of optical flow in the new
object region. We find that even with these linear motion
cases, all methods still fail to predict unseen objects, which
raises our concern.

3. Mask Segmentation
To facilitate the corresponding segmentation, we developed
a simple GUI-based application using SAM [4]. This appli-
cation allows users to interactively segment the same object
in a pair of images simply by clicking with the mouse.

Given I1, I2, fgt, we can get the segmentation of any in-
stance in I1 by

S1 = SAM(I1, P rompt(P1)) (6)

Where P1 is a set of indices obtained by a series of mouse
clicks. We can match the corresponding points from P1 in
I1 to I2 using the ground truth optical flow fgt. The mask
of the same object in I2 is

P2 = P1 + fgt(P1), (7)

S2 = SAM(I2, P rompt(P2)) (8)

The screenshot of the APP is shown in Figure 1.

4. Generate Textures with ControlNet
To generate high-quality textures with fixed shape, we uti-
lize a Large Language Model (LLM) [5] to generate a pre-

cise prompt for the mask S2. Specially, we feed the S2 into
GPT4 and ask the following questions:

Q1:Can you recognize which object this mask repre-
sents? Please list n of the most likely common objects that
fit in the mask.

Here, n is a number of objects, then we select the most
common objects and ask the following question.

Q2:Provide a prompt for ControlNet [9]: [object] with
[color/texture] that appears realistic in the real world, en-
suring it fits within the provided [mask].

With the output prompt N of and S2, the new image can
be generated by:

Image(N) = ControlNet(N,S2) (9)

We use ComfyUI [6, 7] to batch-generate texture images.
A brief pipeline is shown in Figure 2.

5. More Examples of Flow-R
We present more examples of Flow-R in Figure 3. The first,
second, third, and fourth columns indicate the correspond-
ing data from KITTI, Flow-R-T, Flow-R-S, and Flow-R-O,
respectively. For every three rows, indicate frames 1 and 2,
along with the visualization of optical flow.

Code and data are available at
https://github.com/llesky/Robustness-Analysis-Optical-
Flow.



Figure 3. More Examples of Flow-R.



Method Sintel-R-T Sintel-R-S Sintel-R-O(SEEN) Sintel-R-O(UNSEEN)

Clean Final Clean Final Clean Final Clean Final

RAFT[8] 0.83 1.33 1.76 2.28 2.24 2.67 6.8 7.26
GMA[3] 0.71 1.21 1.60 2.14 2.31 2.53 6.72 7.11
Flowformer[2] 0.54 0.85 1.37 1.66 2.27 2.55 6.94 7.42

Table 1. Quantitative results on MPI-Sintel [1] dataset. We report the average end-point error (AEPE).

Figure 4. Our Flow-R Method applied to MPI-Sintel [1]. Two example image pairs with results for Flow-R-T, Flow-R-S and Flow-R-O.

6. Additional Experiments

We report additional experiments with MPI-Sintel[1] (see
Figure 4), and observe similar behavior as with the KITTI
data (see Table 1). One interesting phenomenon is that by
using the weights trained in Stage 3 (T+K+S+H) and test-
ing on MPI-Sintel, unseen objects tend to be ignored. How-
ever, we find that the failure cases are fewer than in KITTI.
We assume that training with more domains or more scenes
could help reduce this error further.

We conducted further experiments with affine transforms
(Figure 5) of scaling [0.3, 2], rotation [−30◦,+30◦], and
translation [−50,+50] (original offset ∆x + translation).
According to Table 2, we observe that rotation significantly
increases errors because less pixels are matched.

Scaling Rotation Translation Mix
RAFT 1.93 2.87 2.36 3.10
GMA 1.86 2.64 2.31 3.02

Table 2. Quantitative results with affine transforms.

References
[1] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A nat-

uralistic open source movie for optical flow evaluation. In
European Conference on Computer Vision, pages 611–625,
2012. 5

[2] Zhaoyang Huang, Xiaoyu Shi, Chao Zhang, Qiang Wang,
Ka Chun Cheung, Hongwei Qin, Jifeng Dai, and Hongsheng
Li. FlowFormer: A transformer architecture for optical flow.



Figure 5. Visualization of affine transformation.

European Conference on Computer Vision, 2022. 5
[3] Shihao Jiang, Dylan Campbell, Yao Lu, Hongdong Li, and

Richard Hartley. Learning to estimate hidden motions with
global motion aggregation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9772–
9781, 2021. 5

[4] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross
Girshick. Segment anything. arXiv:2304.02643, 2023. 3

[5] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, and Florencia Leoni Aleman et
al. Gpt-4 technical report, 2024. 3

[6] Comfy Org. Comfyui: A modular gui for stable diffusion,
2023. Accessed: 2024-11-21. 3

[7] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10807–10817. IEEE, 2022. 3

[8] Zachary Teed and Jia Deng. RAFT: Recurrent All-Pairs Field
Transforms for Optical Flow. In European Conference on
Computer Vision, page 402–419, Glasgow, UK, 2020. 5

[9] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 3836–3847, 2023. 3


	. Optical Flow Update due to Shape Changes
	. Upscaling
	. General Affine Transformation

	. Occlusion Handling
	. Mask Segmentation
	. Generate Textures with ControlNet
	. More Examples of Flow-R
	. Additional Experiments

