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A. More Ablation Studies

On the basis of the training settings outlined in Section 4.4,
we additionally conduct a series of in-depth ablation exper-
iments to meticulously examine the impact of every compo-
nent in our proposed method.

Impact of Kernel Sizes. We compared the performance
under various settings of kernel sizes, as outlined in Table 6
(the definition of the kernel size in our proposed method is
given in Section 3.3). The results indicate that the config-
uration {[17, 15, 13], [7], [13, 7]} yields the optimal perfor-
mance on both image classification and semantic segmen-
tation tasks. Further enlarging the kernels does not lead to
additional improvements.

Table A. Ablation study of the kernel size setting.

Kernel Sizes # F (G) # P (M) Top-1 (%) mIoU (%)

{[19, 17, 15], [7], [15, 7]} 2.8 16.5 80.7 43.8
{[17, 15, 13], [7], [13, 7]} 2.6 16.4 80.8 43.8
{[13, 11, 9], [7], [9, 7]} 2.6 16.3 80.5 43.5
{[9, 9, 7], [7], [7, 7]} 2.6 16.1 80.6 43.3
{[7, 7, 7], [7], [7, 7]} 2.5 16.1 80.4 43.1

Impact of Stage Ratio. The Stage Ratio means the ratio
between the number of blocks in the last stage of Base-Net
and the number of blocks in the first stage of Focus-Net. In
the default setting of the OverLoCK model, the stage ratio is
1:2 with the intention of allocating more network blocks to
Focus-Net for extracting robust contextual information. In
this section, we investigate the impact of Stage Ratio. Apart
from the default setting of 1:2, we further set Stage Ratio to
1:1 and 1:3 while maintaining the total number of network
blocks constant. The results presented in Table B demon-
strate that a Stage Ratio of 1:2 yields the best outcomes.
We posit that this is because a too small Stage Ratio results
in insufficient number of blocks in Focus-Net, thereby hin-
dering the extraction of discriminative deep features. Con-
versely, an excessively large Stage Ratio leads to a shortage

of blocks in Base-Net, thereby providing insufficient con-
textual guidance.

Table B. Ablation study of different stage ratio settings.

Stage Ratio # F (G) # P (M) Top-1 (%) mIoU (%)

1:1 2.7 16.1 80.4 42.9
1:2 2.6 16.4 80.8 43.8
1:3 2.7 15.9 80.6 43.6

Impact of Channel Reduction Factor. In the default
configuration of the OverLoCK model, we employ a 1×1
convolution to reduce the number of output channels of
Overview-Net by a factor of 4 and concatenate this result
with the output of Base-Net before forwarding it to Focus-
Net. We term this reduction as the Channel Reduction
Factor (CRF). Therefore, the value of CRF determines the
number of channels in the context prior, thereby influenc-
ing the guidance capability. In this regard, we investigate
the effects of different CRF settings. It is important to note
that during the adjustment of CRF, we also modify the num-
ber of channels of Focus-Net to maintain similar complexi-
ties across different model variants. The results in Table C
demonstrate that CRF=4 yields the optimal performance.

Table C. Ablation study of channel reduction factor settings.

CRF # F (G) # P (M) Top-1 (%) mIoU (%)

2 2.6 16.1 80.5 42.9
4 2.6 16.4 80.8 43.8
6 2.7 16.6 80.7 43.4
8 2.7 16.7 80.6 43.0

Impact of Auxiliary Loss. To explore the effects of
applying the auxiliary loss to Overview-Net, we adjust the
weight of the auxiliary loss, drawing inspiration from prior
research [10]. Given that the architectures of the models in
this comparison are consistent, we opt not conduct further
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experiments on segmentation tasks for the sake of simplic-
ity. The results presented in Table D indicate that the utiliza-
tion of an auxiliary loss improves accuracy, while varying
the weight of the auxiliary loss does not lead to a notable
impact on performance. This observation aligns with find-
ings in previous study [10].

Table D. Ablation study of auxiliary loss.

Aux Loss Ratio 0 0.2 0.4 0.8 1.0

Top-1 (%) 80.4 80.7 80.8 80.7 80.7

Effectiveness of our DDS-based Top-down Network.
To evaluate the effectiveness of the proposed DDS, we re-
construct our OverLoCK-XT model as a standard hierar-
chical network. To be specific, we eliminate the top-down
attention mechanism by removing the Overview-Net while
keeping the same types of layers in the Base-Net and Focus-
Net. To maintain comparable complexity with other mod-
els, the number of channels and layers in the four stages are
set to [64, 112, 256, 360] and [2, 2, 9, 4], respectively. This
model is denoted as the “Hierarchical Model”. Addition-
ally, we compare it with the “Baseline” model in Table 6
which is a fully static ConvNet. As shown in Table E, the
“Hierarchical Model” results in a noticeable performance
drop, demonstrating the effectiveness of our DDS-based
top-down context guidance. However, when compared with
the “Baseline” model, it still exhibits significant advantages,
clearly indicating the superiority of our proposed dynamic
convolution module.

Table E. Effectiveness of the proposed DDS-based top-down net-
work.

Method # F (G) # P (M) Top-1 (%) mIoU (%)

Baseline Model 2.6 16.3 78.5 41.1
Hierarchical Model 2.7 16.2 79.2 41.9
OverLoCK-XT 2.6 16.4 80.7 43.8

Ablation Study of ContMix. We conduct a compre-
hensive comparison of various components within our pro-
posed ContMix framework, as presented in Section 3.2. As
listed in Table F, we initially compute Q and K using the
fused feature map instead of utilizing the channels of X cor-
responding to Zi and Pi (the latest context prior). This
model variant, referred to as “Fusion Affinity”, results in
a marginal performance decline. Subsequently, we inter-
change the features used to generate the Q and K matrices.
This model, denoted as “Reverse QK”, also exhibits a de-
crease in performance. Furthermore, we individually elim-
inate the Softmax function (referred to as “w/o Softmax”),
remove the RepConv (referred to as “w/o RepConv”), and
substitute small kernels with large kernels (referred to as

“w/o Small Kernel”). These alterations decrease perfor-
mance on both classification and segmentation tasks.

Table F. Ablation study of ContMix.

Method # F (G) # P (M) Top-1 (%) mIoU (%)

Baseline 2.6 16.4 80.8 43.8
Fusion Affinity 2.7 16.6 80.7 43.5
Reverse QK 2.7 16.4 80.6 42.9
w/o Softmax 2.6 16.4 80.5 43.5
w/o RepConv 2.5 16.1 80.6 43.4
w/o Small Kernel 2.8 16.6 80.7 43.3

Table G. A comparison of image classification with 384×384 in-
puts.

Method Type # F (G) # P (M) Acc. (%)

Swin-B T 47.1 88 84.5
MaxViT-B T 74.2 120 85.7
ConvNeXt-B C 45.2 88 85.1
InceptionNeXt-B C 43.6 87 85.2
RDNet-L C 101.9 186 85.8
PeLK-B-101 C 68.3 90 85.8
OverLock-B C 50.4 95 86.2

Table H. Robustness comparisons of different models.

Models # F (G) # P (G) 1K V2 A R Sketch

Swin-T 4.5 28 81.3 69.7 21.1 41.5 29.3
VMamba-T 4.9 29 82.6 72.0 27.0 45.4 32.9
ConvNeXt-T 4.5 29 82.1 72.5 24.2 47.2 33.8
HorNet-T 4.0 22 82.8 72.3 26.6 46.6 34.1
SLaK-T 5.0 30 82.5 72.0 30.0 45.3 32.4
NAT-T 4.3 28 83.2 72.2 33.0 44.9 31.9
RDNet-T 5.0 24 82.8 72.9 27.7 49.0 37.0
UniRepLKNet-T 4.9 25 83.2 72.8 34.8 49.4 36.9
MogaNet-S 5.0 33 83.4 72.6 33.4 49.7 37.8
OverLoCK-T 5.5 33 84.2 74.0 39.4 53.3 40.6

Swin-S 8.7 50 83.0 72.0 32.5 45.2 32.3
VMamba-S 8.7 50 83.6 73.2 33.2 49.4 37.0
ConvNeXt-S 8.7 50 83.1 72.5 31.3 49.6 37.1
HorNet-S 8.8 50 84.0 73.6 36.2 49.7 36.9
SLaK-S 9.8 55 83.8 73.6 39.3 50.9 37.5
NAT-S 7.8 51 83.7 73.2 37.4 47.3 34.3
RDNet-S 8.7 50 83.7 73.8 33.5 52.8 39.8
UniRepLKNet-S 9.1 56 83.9 73.7 38.3 50.6 36.9
MogaNet-B 9.9 44 84.3 74.3 40.4 50.1 38.6
OverLoCK-S 9.7 56 84.8 74.9 45.0 57.2 45.8

Swin-B 15.4 88 83.5 72.4 35.4 46.5 32.7
VMamba-B 15.4 89 83.9 73.5 37.2 49.5 38.5
ConvNeXt-B 15.4 89 83.8 73.7 36.7 51.2 38.2
HorNet-B 15.6 87 84.3 73.9 39.9 51.2 38.1
SLaK-B 17.1 95 84.0 74.0 41.6 50.8 38.5
NAT-B 13.7 90 84.3 74.1 41.4 49.7 36.6
RDNet-B 15.4 87 84.4 74.2 38.1 52.7 40.1
MogaNet-L 15.9 83 84.7 74.0 41.0 52.2 39.0
OverLoCK-B 16.7 95 85.1 75.4 47.7 58.5 46.0



Table I. Speed comparison among various models. Throughput (Thr.) is tested on a single NVIDIA L40S GPU with a batch size of 128
and an image size of 3×224×224.

Method # F (G) # P (M) Thr. (imgs/s) Acc. (%) Method # F (G) # P (M) Thr. (imgs/s) Acc. (%)

Swin-T 4.5 28 1324 81.3 FocalNet-T 4.5 29 1251 82.3
Swin-S 8.7 50 812 83.0 FocalNet-S 8.7 50 777 83.5
Swin-B 15.4 88 544 83.5 FocalNet-B 15.4 89 481 83.7

MaxViT-T 5.6 31 683 83.7 SLaK-T 5.0 30 1126 82.5
MaxViT-S 11.7 69 439 84.5 SLaK-S 9.8 55 747 83.8
MaxViT-B 24.0 120 241 84.9 SLaK-B 17.1 95 478 83.7

NAT-M 2.7 20 1740 81.8 InternImage-T 5.0 30 1084 83.5
NAT-T 4.3 28 1287 83.2 InternImage-S 8.0 50 740 84.2
NAT-S 7.8 51 823 83.7 InternImage-B 16.0 97 481 84.9

NAT-B 13.7 90 574 84.3 UniRepLKNet-N 2.8 18 1792 81.6

BiFormer-T 2.2 13 1103 81.4 UniRepLKNet-T 4.9 31 1094 83.2
BiFormer-S 4.5 26 527 83.8 UniRepLKNet-S 9.1 56 707 83.9

BiFormer-B 9.8 57 341 84.3 MogaNet-S 5.0 25 766 83.4

VMamba-T 4.9 29 1179 82.6 MogaNet-B 9.9 44 373 84.3
VMamba-S 8.7 50 596 83.6 MogaNet-L 15.9 83 282 84.7

VMamba-B 15.4 89 439 83.9 OverLoCK-XT 2.6 16 1672 82.7

ConvNeXt-T 4.5 29 1507 82.1 OverLoCK-T 5.5 33 810 84.2
ConvNeXt-S 8.7 50 926 83.1 OverLoCK-S 9.7 56 480 84.8
ConvNeXt-B 15.4 89 608 83.8 OverLoCK-B 16.7 95 306 85.1

B. Additional Experiments on Image Classifi-
cation

B.1. Large Resolution Evaluation

Following previous works [3, 4, 9], we further investigate
the image classification performance on the ImageNet-1K
dataset at a higher resolution (i.e., 384×384). Specifically,
we pre-train the base model on 224×224 inputs and then
fine-tune it on 384×384 inputs for 30 epochs. As shown
in Table G, our OverLock-B model achieves superior per-
formance under high-resolution input conditions. Notably,
OverLock-B surpasses MaxViT-B by 0.5% in Top-1 accu-
racy while reducing the parameter count by over one-third.
Compared to PeLK-B, a large kernel ConvNet, our method
also demonstrates significant improvements. These results
further validate the robustness of our proposed method in
handling large-resolution inputs.

B.2. Robustness Evaluation

We further assess the robustness of our models using the
ImageNet out-of-distribution (OOD) benchmarks, includ-
ing ImageNet-V2 [6], ImageNet-A [2], ImageNet-R [1],
and ImageNet-Sketch [8]. As shown in Table H, our method
demonstrates excellent robustness on different datasets, out-
performing representative ConvNets, Vision Transform-
ers, and Vision Mamba. Notably, although OverLoCK-
B improves over MogaNet-L by 0.4% in Top-1 accuracy
on ImageNet-1K, it achieves significant gains on OOD
datasets, with improvements of 1.4% on ImageNet-V2,

6.7% on ImageNet-A, 6.3% on ImageNet-R, and 6.8% on
ImageNet-Sketch. These results showcase the strong ro-
bustness of our pure ConvNet.

C. Speed Analysis

We provide a comparison of speed-accuracy trade-off in
Figure 1. More details are listed in Table 1, where an Over-
LoCK variant often achieves faster speed and higher accu-
racy simultaneously than a larger variant of another net-
work, demonstrating an excellent trade-off between speed
and accuracy. For instance, OverLoCK-XT achieves 1672
imgs/s in throughput, improving upon Swin-T by over 300
imgs/s, while significantly enhancing Top-1 accuracy by
1.4%. Also, OverLoCK-T achieves about 200 imgs/s im-
provement in throughput compared to ConvNeXt-B while
achieving better performance at the cost of only around
one-third of the FLOPS. When compared to more advanced
models, OverLoCK still exhibits significant advantages.
For example, OverLoCK-S surpasses MogaNet-B by over
100 imgs/s in throughput while increasing Top-1 accuracy
from 84.3% to 84.8%. Likewise, OverLoCK-XT surpasses
BiFormer-T by over 600 imgs/s in throughput while re-
markably improving Top-1 accuracy by 1.3%.

D. Visualization Analysis

D.1. Effect of Context Guidance

To visually understand the effect of context guidance, we
separately visualize the class activation maps generated by



(a) (b) (c)

Figure A. Class activation maps of the proposed OverLoCK net-
work. (a), (b), and (c) show the input images, class activation maps
of Overview-Net, and class activation maps of Focus-Net, respec-
tively.

Swin-T

ConvNeXt-T

VMamba-T

OverLock-T

BiFormer-S

MogaNet-S

NAT-T

FocalNetLRF-T

Figure B. Comparison of ERF among various models.

Overview-Net and Focus-Net in OverLoCK-T using Grad-
CAM [7] for the ImageNet-1K validation set. As shown in
Figure A, Overview-Net first produces a coarse localization
of an object, and when this signal is used as the top-down
guidance for Focus-Net, the object’s location and shape be-
comes more accurate.

D.2. Effective Receptive Field Analysis

To visually demonstrate the representation capacity of
OverLoCK, we compare the Effective Receptive Field
(ERF) [5] of our OverLoCK-T with that of other represen-
tative models with comparable complexity. The visualiza-
tions are generated using over 300 randomly sampled im-
ages with a resolution of 224×224 from the ImageNet-1K
validation set. As shown in Figure B, our model not only
produces global responses but also exhibits significant local
sensitivity, indicating that OverLoCK can effectively model
both global and local contexts simultaneously.
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