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1. More implementation details
To estimate monocular depth, we employ Depth Anything
V2 [13] and Depth Pro [1]. For Depth Anything V2, we use
the large model variant to predict depth maps. During the
global alignment of our method, we perform 300 iterations
with the Adam optimizer, setting an initial learning rate of
0.05 and using a cosine learning rate schedule.

2. More qualitative results
2.1. Depth comparison
To provide a more vivid illustration, we perform visual
comparisons on the PointOdyssey [15] validation set and
the FlyingThings3D [6] test set, both containing numerous
moving objects. In Fig. 2 and Fig. 3, we compare the Depth
Pro version Align3R with two video depth estimation meth-
ods, ChronoDepth [10] and DepthCrafter [3]. It is worth
noting that we visualize the depth after sequence align-
ment, with invalid areas replaced by white. These com-
parisons demonstrate that, after alignment, our approach
achieves enhanced temporal consistency and finer detail by
integrating the monocular depth estimator Depth Pro with
DUSt3R [12]. Additionally, in Fig. 2, the reason why some
foreground objects predicted by DepthCrafter are shown in
red is primarily due to certain regions in DepthCrafter hav-
ing depth values less than 0 after sequence alignment. This
indicates that the relative depth relationships between ob-
jects generated by DepthCrafter are not entirely accurate.

2.2. Camera pose comparison
In Fig. 4, we present qualitative results for camera pose
estimation on the Sintel [2], Bonn [7], and TUM dynam-
ics [11] datasets. We compare our model with the pose-only
method COLMAP [9] and two joint depth and pose esti-
mation methods, DUSt3R [12] and MonST3R [14]. These
comparisons show that our approach achieves improved
camera pose estimation, demonstrating better consistency
and closer alignment with the ground truth trajectory.

2.3. Dynamic point clouds
To further demonstrate the effectiveness of our method in
depth and camera pose estimation, we present additional vi-
sualizations of the reconstructed point clouds. As illustrated
in Fig. 5, the reconstructed point clouds exhibit strong ge-
ometric accuracy and temporal consistency, maintaining a
clear structure for dynamic objects. This consistency across
frames highlights our model’s ability to handle complex,
real-world movements while preserving coherent geometry.

Optimization Depth estimation
Abs Rel ↓ δ < 1.25 ↑

Depth maps 0.306 0.613
Scale maps 0.419 0.604

Table 1. Analysis of the scale map optimization on the Sintel
dataset.

Such results underline the robustness of our approach, ef-
fectively capturing and maintaining precise depth and pose
information for improved 3D scene understanding in dy-
namic environments.

3. More ablation study
Ablation on point maps with depth maps. We have con-
ducted an ablation study in Table 2, which demonstrates that
point maps generally outperform depth maps.

Directly aligning the depth. An alternative to get con-
sistent depth maps is to align the monocular depth map
with scale factors. In Tab. 1, we align the monocular depth
map Iv predicted by Depth Pro using a scale map. In-
stead of learning a depth map for each frame, we learn
S := {Sv ∈ RH×W |v = 1, ..., N} a set of scale maps
to minimize the DUSt3R target,

argmin
S,π,σ

∑
e∈E
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v∈e

Ce
v

∥∥∥SvD̂v − σePe(πv,X
e
v)
∥∥∥2
2
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The only difference here is that we do not learn a set of
depth maps D but we learn the scale map Sv and compute
the depth map as the product Dv = SvD̂v where D̂v is
the predicted Depth Pro depth map on the v-th view. This
optimization process corresponds to traditional video depth
optimization methods [4, 5]. However, since the initialized
monocular depth maps predicted by Depth Pro are incon-
sistent across different frames, As shown in Fig. 1, solely
optimizing the scale maps leads to inferior performances.

Flow loss of MonST3R [14]. We adopt the flow loss in
MonST3R [14] because we find that flow loss does not af-
fect the depth estimation too much but plays a crucial role
in achieving accurate camera pose estimation. As shown
in Table 3, we conduct an experiment on the three datasets
(Sintel, TUM dynamics and Bonn) to analyze the effects
of flow loss. Since camera poses can only be evaluated
in 14 scenes of Sintel (as discussed in Section 4.3 of the
main text), we also report the depth results of these same
14 scenes. For TUM dynamics and Bonn, we only perform
the evaluation with the same 30 frames per scene for both
camera pose and depth estimation. From the comparison,
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Setting Sintel (Depth) TUM dynamics (Depth) Sintel (Pose) TUM dynamics (Pose)
Abs Rel↓ δ<1.25↑ Abs Rel↓ δ<1.25↑ ATE↓ RPE Trans↓ RPE Rot↓ ATE↓ RPE Trans↓ RPE Rot↓

Depth map 0.278 0.632 0.121 0.862 0.216 0.111 0.381 0.015 0.012 0.341
Point map 0.263 0.641 0.112 0.884 0.128 0.042 0.432 0.012 0.010 0.327

Table 2. Ablation on point maps with depth maps on the Sintel and TUM dynamics dataset.

W/o during 
global alignment

W during 
global alignment

Figure 1. Visualization results with and without incorporating monocular depth estimation during global alignment.

we observe minimal differences in depth metrics but signif-
icant improvements in pose estimation. Meanwhile, we find
that directly applying the flow loss to the original DUSt3R
greatly improve the pose estimation. The main reason is
that the camera poses can be determined by several robust
correspondences while being insensitive to the most depth
values.

Sintel Abs Rel↓ δ<1.25↑ ATE↓ RPE Trans↓ RPE Rot↓
DUSt3R w/o flow 0.515 0.533 0.601 0.214 11.426
DUSt3R w flow 0.512 0.549 0.327 0.111 1.014

MonST3R 0.353 0.570 0.111 0.044 0.780
Ours w/o flow 0.314 0.562 0.204 0.164 2.305
Ours w flow 0.317 0.577 0.128 0.042 0.432

TUM-dynamics Abs Rel↓ δ<1.25↑ ATE↓ RPE Trans↓ RPE Rot↓
DUSt3R w/o flow 0.172 0.766 0.093 0.035 1.708
DUSt3R w flow 0.177 0.768 0.017 0.014 0.508

MonST3R 0.124 0.846 0.020 0.014 0.478
Ours w/o flow 0.099 0.879 0.043 0.025 0.630
Ours w flow 0.094 0.897 0.012 0.010 0.327

Bonn 5 scene Abs Rel↓ δ<1.25↑ ATE↓ RPE Trans↓ RPE Rot↓
DUSt3R w/o flow 0.121 0.846 2.166 0.650 1.169
DUSt3R w flow 0.113 0.874 0.754 0.700 0.598

MonST3R 0.060 0.971 0.686 0.595 0.593
Ours w/o flow 0.053 0.977 1.250 0.630 0.607
Ours w flow 0.052 0.977 0.673 0.570 0.576

Table 3. Analysis of the flow loss [14] for depth and pose esti-
mation.

Runtime analysis. In Tab. 4, we provide an additional
comparison of inference time using the same dataset setting
as Tab.5 in the main text. Since the number of image pairs
is a primary factor influencing inference time, we count the
image pairs for each method to better understand the rea-
sons behind these differences. In DUSt3r, with a window

Method #Pair Avg. time (min)↓
DUSt3R [12] 600 2.9
MonST3R [14] 250 2.6
Ours 138 1.8

Table 4. Comparison on inference time.

size of 10, for any given image i, the image pairs are:

{(i, (i+ 1)%30), ((i+ 1)%30, i), . . . , (i, (i+ 10)%30),

((i+ 10)%30, i)},
(2)

resulting in a total of 10×30×2 = 600 pairs. In MonST3r,
the stride is set to 2 with a window size of 5, and explicit
loop closure is not considered. So for any image i, the pairs
are:

{(i, i+ 1), (i+ 1, i), (i, i+ 1 + 2), (i+ 1 + 2, i), . . . ,

(i, i+ 2k + 1), (i+ 2k + 1, i)},
(3)

where k = min(5, 30−1−i
2 ). This configuration yields a

total of 250 image pairs. In our method, we divide the
30 images into 3 groups, without explicit loop closure and
symmetrical pairs. So the total image pairs are 3 (keyframe
pairs) + 10×9

2 ×3 = 138 (each group pairs) pairs. Thus, due
to the significant difference in the number of image pairs,
our method achieves the fastest inference speed, regardless
of whether flow and trajectory smoothness losses are ap-
plied.

4. Relationship with MonST3R
Align3R is a concurrent work with MonST3R [14]. We
started our project in June 2024 and the project is initially
intended to improve the temporal consistency of monocular
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depth estimation. Our initial idea is to adopt DUSt3R [12]
to align estimated depth maps of different frames. Thus, our
codes are mainly based on DUSt3R and we incorporate the
estimated depth maps in fine-tuning DUSt3R.

MonST3R [14] is released on arXiv in October 2024,
which aims to extend the DUSt3R model on dynamic videos
without utilizing monocular depth estimation. Thus, our
motivation is different from MonST3R but leads to a simi-
lar solution in the end. We find that the flow loss proposed
in MonST3R is very important for pose estimation and thus
we utilize the flow loss of MonST3R in our implementation.
We sincerely thank the authors of DUSt3R and MonST3R
for sharing their codes of these two great works.

References
[1] Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain,
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Input video ChronoDepth DepthCrafter Ours w Depth Pro GT

Figure 2. Qualitative comparison on the PointOdyssey [15] validation set with ChronoDepth [10] and DepthCrafter [3].
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Input video ChronoDepth Depth Pro Ours w Depth Pro GT

Figure 3. Qualitative comparison on the FlyingThings3D [6] test set with ChronoDepth [10] and Depth Pro [1].
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Figure 4. Camera pose estimation comparison on the TUM dynamics [11], Bonn [7], and Sintel [2] datasets.
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Input video Input video Generated point cloud Generated point cloud

Figure 5. Visualization of point clouds on the DAVIS [8] and TUM dynamics [7] datasets.
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