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Supplementary Material

We present DeCafNet, an efficient algorithm that uses a
delegate-and-conquer strategy to achieve accurate and ef-
ficient temporal grounding in long videos. In this supple-
mentary material, we provide additional details about our
architecture, experimental results, ablation studies, and im-
plementation specifics.

1. Additional Architectural Details
To enable temporal grounding using features extracted by
both the sidekick and expert encoders, we introduce DeCaf-
Grounder. DeCaf-Grounder consists of the following key
components: query-aware temporal aggregation, multi-
scale temporal refinement, and classifier & regressor. In this
section, we provide additional details about the multi-scale
temporal refinement component.

Recall that, DeCaf-Grounder produces multi-scale fea-
tures via query-aware temporal aggregation, {Zl}Ll=0. The
features capture temporal information from local to global
scales, i.e., Z0 represents the most local scale, encoding one
clip per feature, and ZL is the most global scale, encoding
2L clips per feature.

Since the features generated by the sidekick and expert
encoders are at different temporal resolutions, this mis-
match can result in inconsistencies in Zl across varying
scales. We aggregate information across scales to improve
temporal grounding and focus on grounding-relevant infor-
mation to maximize efficiency. Overall, multi-scale tempo-
ral refinement consists of four steps: transform-expand-
aggregate-pool, as shown in Figure 1.
Transform. To explicitly capture grounding-specific infor-
mation, we transform {Zl} to {pl} via a FFN classifier,

pl = FFN(Zl) ∈ RT/2l . (1)

where pl has the same temporal length as Zl. It explicitly
denotes if the ground truth moments happen at the temporal
position represented by features in Zl. This also reduces
the feature dimension to 1. The FFN classifier is trained via
Focal Loss as explained in the main paper.
Expand. To combine {pl}, we need to first align their tem-
poral lengths. We apply linear interpolation to expand each
pl to length T ,

p̂l = linear-interpolate(pl) ∈ RT . (2)

All {p̂l} have the same temporal length T . Thus, we can
concatenate them to obtain P̂ = concat[p̂0, . . . , p̂T ] ∈
RT×L.

ΨD ΨE TFLOPS Mem (G) Time (Sec)

100% 0% 64.8 40.1 1.9
0% 100% 2071.8 700.4 48.0

100% 30% 686.3 ↓ 67% 250.2 ↓ 64% 15.3 ↓ 68%

100% 50% 1100.7 ↓ 47% 390.3 ↓ 44% 24.3 ↓ 49%

Table 1. Average Encoder Computation measured on Ego4D-
GoalStep [6] dataset. Column 1, 2 show the amount of clips pro-
cessed by each encoder. With saliency selection (row 3, 4), De-
CafNet significantly reduces TFLOPs by 47% and 67% compared
to the feature-extraction cost in prior works that process all clips
with expert encoder ΨE (row 2).

Aggregate. With P̂, we employ a temporal convolution to
synchronize grounding information across scales,

H = convolution(P̂) ∈ RT×C , (3)

where H is the output of temporal convolution, encoding
refined grounding information. C is the size of feature di-
mension.
Pool. To combine H with the initial features {Zl}, we con-
tinue to compute a multi-scale feature pyramid from H via
simple average pooling,

Ul = average-pooling(H) ∈ RT/2l×C , (4)

where Ul is obtained by pooling H on temporal dimension
by a factor of 2l. Finally, we concatenate it with Zl to obtain
Zl

refine as explained in the main paper.

2. Computation Efficiency on Ego4D-Goalstep
In Table 2 of the main paper, we have reported computation
efficiency on Ego4D-NLQ dataset. In Table 1 of this supple-
mentary material, we also show the computation on Ego4D-
Goalstep dataset. Row 2 shows the feature extraction cost
of all prior works that process all clips via expert encoder
ΨE . Row 3 and 4 show the computation of our saliency
selection method with the sidekick encoder ΨD. Since the
computation cost is linear to the number of video clips, we
similarly reduce TFLOPS by 67% and 47%, demonstrating
our delegate-and-conquer approach has significantly lower
computation cost than prior methods.

3. Additional Experimental Results
Table 2, 3 show complete model results on Ego4D-NLQ
and Ego4D-Goalstep datasets. Their settings are consistent



Figure 1. Details of multi-scale temporal refinement. The multi-scale features produced by the temporal transformer are transformed into
grounding scores using an FFN classifier. To synchronize grounding information across different scales, we utilize linear interpolation and
temporal convolution. Finally, average pooling is applied to effectively combine the synchronized features with the input features.

R1@0.3 R1@0.5 R5@0.3 R5@0.5 AVG

RGNet [1] 18.28 12.04 34.02 22.89 21.81

SnAG [4] 15.87 11.26 38.26 27.16 23.14

DeCafNet-30% 18.07 12.41 37.68 27.47 23.91

DeCafNet-50% 18.10 12.55 38.85 28.27 24.44
DeCafNet-100% 19.07 12.98 41.57 30.42 26.01

RGNet[1] † 20.63 12.47 41.67 25.08 24.96

DeCafNet-30% † 21.13 15.04 42.42 31.22 27.45

DeCafNet-50% † 20.81 15.04 42.40 31.68 27.48
DeCafNet-100% † 22.21 15.52 45.63 33.93 29.32

Table 2. Complete Model Results on Ego4D-NLQ dataset. † de-
notes the models are pretrained on NaQ dataset [5].

R1@0.3 R1@0.5 R5@0.3 R5@0.5 AVG

VSLNet [7] 11.70 - - - -
SnAG [4] 18.34 15.12 45.95 38.55 29.49
RGNet [1] 21.26 15.71 47.15 37.85 30.49

DeCafNet-30% 20.01 16.22 44.70 37.34 29.56
DeCafNet-50% 21.29 17.46 47.27 40.40 31.61
DeCafNet-100% 23.20 19.40 51.38 44.17 34.54

Table 3. Complete Model Results on Ego4D-Goalstep dataset.

with those of Table 1, 3 in the main paper. We include the

performance of DeCafNet-100% on both datasets, where
we process all clips with both sidekick and expert encoders
(rows in blue in Table 2 and Table 3). Compared to all prior
methods that process all clips with the expert encoder, this
model provides more diverse features to grounding models
with only 3% more TFLOPs for running the sidekick en-
coder (row 1 vs row 2 in Table 1). It can be observed that,
DeCafNet-100% greatly boosts the performance. In Table
2, it achieves an average recall of 26.01% on Ego4D-NLQ,
higher than SnAG by 2.87%. In Table 3, it achieves an
average recall of 34.54% on Ego4D-Goalstep, higher than
SnAG by 4.05%.

Moreover, we also follow the setting in RGNet to pre-
train models on the larger NaQ dataset [5], as shown in
the second section of Table 2. First, we highlight that, our
DeCafNet-50% without pretraining already achieves close
performance to RGNet with pretraining, while using 47%
less computations. After pretraining, DeCafNet outper-
forms RGNet by large margins and improves average recall
by 2.49% to 4.36%. Pretraining also enhances our accu-
racy on saliency selection, therefore DeCafNet-30% now
has similar performance as DeCafNet-50%.

4. Implementation Details
Our sidekick encoder has 12 spatio-temporal blocks and we
initialize its weight from [2] to speed up training. For tem-
poral convolution [3] in multi-scale temporal refinement,



we use 8 layers, where the dilation rate of the i-th convolu-
tion layer equals to 2i. Since neither SnAG nor RGNet re-
ports performance on the Ego4D-Goalstep dataset, we use
their released codes to report performance on this dataset.
We measure all computation cost using one 80GB A100
GPU. When the GPU cannot store all video clips in mem-
ory, we split the data into multiple batches and report the
overall TFLOPS/Mem/Time summed over all batches. To
evaluate on short temporal video grounding datasets, we
use features released by SnAG and use the I3D feature for
Charades-STA dataset.

5. Limitations
DeCafNet has established new SOTA for LVTG with
greatly reduced computation. However, the overall re-
call values are relatively low, especially for R1@0.3 and
R1@0.5. We found this is partly caused by ambiguity in
text queries in the dataset. For example, for a text query of
“Where was object X before I used it?”, the object was of-
ten used for multiple times by the person. While the model
can identify most of the temporal regions involving the ob-
ject, it is often unclear about which region is the correct
moment and gives them similar confidence. This leads to
low R1@0.3 and R1@0.5, whereas R5@0.3, R5@0.5 are
often much higher. The above mentioned ambiguity can
potentially be mitigated by clarifying text queries, such as
specifying, “Where was object X before I used it for the first
time?”.
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