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A. Corrupt Data Benchmark
The robustness of models under real-world corruptions is a
critical challenge in 3D point cloud analysis and 3D affor-
dance learning [4, 5, 14, 17]. Unlike other 3D representa-
tions, point clouds often face various distortions caused by
sensor inaccuracies, environmental complexities, and post-
processing artifacts, which significantly impact downstream
tasks [6, 7, 18]. For 3D affordance learning, ensuring ro-
bustness is paramount, as affordances are highly sensitive
to object geometry and spatial details.

A.1. Corruption & Severity Level Settings
To standardize evaluation, we introduce a taxonomy of
seven atomic corruption types – Scale, Jitter, Rotate,
Drop Global, Drop Local, Add Global, Add Local – each
simulating distinct real-world perturbations. These atomic
corruptions simplify complex scenarios into controllable
factors, enabling systematic analysis across five levels of
severity. By providing a unified framework for benchmark-
ing, we facilitate consistent and comprehensive assessment

of model robustness, setting the stage for more resilient 3D
affordance learning methods.

Below, we detail the construction methodology for each
corruption type:
• Jitter

– Description: Adds Gaussian noise to perturb each
point’s X, Y, and Z coordinates.

– Mathematical Formulation: For each point, a noise ϵ ∼
N (0, σ2) is added independently to X, Y, and Z.

– Severity Levels: The standard deviation σ varies as:

σ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}.

• Scale
– Description: Applies random scaling independently to

the X, Y, and Z axes.
– Mathematical Formulation: Each axis is scaled by a

factor s ∼ U
(
1
S , S

)
, where S determines the range of

scaling.
– Severity Levels: The range of S is:

S ∈ {1.6, 1.7, 1.8, 1.9, 2.0}.

After scaling, the point cloud is re-normalized to fit
within a unit sphere.

• Rotate
– Description: Introduces random rotation to the point

cloud.
– Mathematical Formulation: The rotation is specified

by Euler angles (α, β, γ), where:

α, β, γ ∼ U(−θ, θ).

– Severity Levels: The angle range θ is:

θ ∈ {π/30, π/15, π/10, π/7.5, π/6}.

This approach does not guarantee uniform sampling in
SO(3), but provides sufficient variation to simulate di-
verse rotations.

• Drop Global
– Description: Randomly removes a percentage of points

from the point cloud.
– Method: Shuffle all points and drop the last N ·ρ points,

where N = 2048 is the total number of points.
– Severity Levels: The proportion ρ is:

ρ ∈ {0.25, 0.375, 0.5, 0.675, 0.75}.

• Drop Local
– Description: Removes points in clusters around ran-

domly selected local regions.
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– Method:
1. Randomly choose the number of local regions C ∼

U{1, 8}.
2. For each region i:

* Randomly select a local center.
* Assign a cluster size Ni.
* Drop the Ni-nearest neighbor points to the center.

3. Repeat for C regions.
– Severity Levels: The total number of points to drop K

is:
K ∈ {100, 200, 300, 400, 500}.

• Add Global
– Description: Uniformly samples additional points in-

side a unit sphere and appends them to the point cloud.
The added points are treated as noise and assigned a
label of 0.

– Method: Sample K random points within a unit sphere.
– Severity Levels: The total number of added points K

is:
K ∈ {10, 20, 30, 40, 50}.

• Add Local
– Description: Adds clusters of points around randomly

selected local regions. The added points are treated as
noise and assigned a label of 0.

– Method:
1. Shuffle points and select C ∼ U{1, 8} as the num-

ber of local centers.
2. For each center i:

* Define a cluster size Ni.
* Generate neighboring points’ coordinates from:

N (µi, σ
2
i I),

where µi is the i-th local center, and σi ∼
U(0.075, 0.125).

3. Append generated points to the cloud one cluster at
a time.

– Severity Levels: The total number of added points K
is:

K ∈ {100, 200, 300, 400, 500}.

A.2. The PIAD-C Dataset
Our proposed PIAD-C dataset is constructed from the test
set of the Seen partition in PIAD [22], specifically designed
to evaluate the robustness of affordance detection models
under various corruption scenarios. This dataset includes a
total of 2, 474 object-affordance pairings, representing 17
affordance categories and 23 object categories, and with
1, 012 distinct clean object shapes. Comprehensive statis-
tics, detailing object categories, their corresponding affor-
dance categories, and the number of object-affordance pair-
ings, are presented in Tab. A. We include additional visual-
ization examples for the PIAD-C dataset in Fig. A.

Table A. Detailed statistics of the proposed PIAD-C dataset,
showing the object categories, their corresponding affordance
types, and the number of object-affordance pairings for each cate-
gory.

# Object Category Affordance Type Data

1 Earphone • listen, grasp 70
2 Bag • contain, open, grasp, lift 50
3 Chair • move, support, sit 587
4 Refrigerator • contain, open 53
5 Knife • stab, cut, grasp 138
6 Dishwasher • contain, open 39
7 Keyboard • press 25
8 Scissors • stab, cut, grasp 29
9 Table • move, support 194
10 StorageFurniture • contain, open 92
11 Bottle • contain, wrap grasp, open, grasp, pour 273
12 Bowl • contain, wrap-grasp, pour 83
13 Microwave • contain, open 47
14 Display • display 52
15 TrashCan • contain, open, pour 69
16 Hat • wear, grasp 66
17 Clock • display 9
18 Door • open, push 47
19 Mug • contain, wrap grasp, grasp, pour 126
20 Faucet • open, grasp 95
21 Vase • contain, wrap-grasp, pour 134
22 Laptop • press, display 112
23 Bed • lay, support, sit 84

Total 23 Categories 17 Affordance Types 2474

Table B. Detailed statistics of the proposed LASO-C dataset,
showing the object categories, their corresponding affordance
types, and the number of distinct objects for each category.

# Object Category Affordance Data

1 Door • open, push, pull 35
2 Clock • display 34
3 Dishwasher • open, contain 20
4 Earphone • listen, grasp 28
5 Vase • contain, pour, wrap-grasp 167
6 Knife • stab, grasp, cut 59
7 Bowl • contain, pour, wrap grasp 36
8 Bag • open, contain, lift, grasp 25
9 Faucet • open, grasp 80
10 Scissors • stab, grasp, cut 11
11 Display • display 58
12 Chair • sit, support, move 858
13 Bottle • grasp, wrap grasp, open, contain, pour 122
14 Microwave • open, contain 23
15 StorageFurniture • open, contain 183
16 Refrigerator • open, contain 23
17 Mug • contain, grasp, pour, wrap-grasp 45
18 Keyboard • press 10
19 Table • support, move 431
20 Bed • sit, support, lay 36
21 Hat • wear, grasp 26
22 Laptop • display, press 55
23 TrashCan • open, contain, pour 51

Total 23 Categories 17 Affordance Types 2416

A.3. The LASO-C Dataset

Our proposed LASO-C dataset is derived from the test set
of the Seen partition in LASO [9], focusing on evaluat-
ing model robustness against point cloud corruptions. This
dataset comprises 2, 416 object-affordance pairings, cover-
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Figure A. Visualization examples of the PIAD-C dataset. We show 7 corruption types across 5 severity levels.

ing 17 affordance categories and 23 object categories, with
a total of 1, 035 distinct clean object shapes.

The comprehensive statistics, detailing object categories,
their corresponding affordance categories, and the number
of object-affordance pairings, are presented in Tab. B. We
include additional visualization examples for the LASO-C
dataset in Fig. B.

B. Benchmark Configuration
In this section, we elaborate in more detail on the configura-
tions and evaluations of the proposed robust 3D affordance
learning benchmark.

B.1. Datasets
We conduct experiments primarily on the LASO[9] and
PIAD[22] datasets, both of which provide paired affordance
and point cloud data for evaluating 3D affordance learning.

LASO. This dataset is a pioneering benchmark designed
to enable language-guided affordance segmentation of 3D
objects. It includes 19,751 point cloud-question pairs
across 8,434 unique object shapes, spanning 23 object

categories and 17 affordance types. Derived from 3D-
AffordanceNet [3], the dataset pairs 3D object point clouds
with questions that were carefully crafted by human ex-
perts and augmented using GPT-4. This process incorpo-
rates principles of contextual enrichment, concise phrasing,
and structural diversity, enhancing the linguistic variety and
complexity of the dataset.

The LASO dataset introduces two distinct evaluation set-
tings:

• Seen Setting: Models are trained and tested on overlap-
ping object-affordance combinations, ensuring that both
the object classes and affordance types in the training set
are also present in the test set.

• Unseen Setting: This setting is designed to evaluate gen-
eralization capabilities. Certain object-affordance com-
binations (e.g., “grasp-mug”) are excluded during train-
ing but appear in testing. This setting challenges models
to transfer affordance knowledge learned from seen com-
binations (e.g., “grasp-bag”) to novel combinations, pro-
moting robust generalization.

These settings promote a comprehensive evaluation of
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Figure B. Visualization examples of the LASO-C dataset. We show 7 corruption types across 5 severity levels.

models’ abilities to generalize affordance knowledge to un-
seen object-affordance pairings, a critical aspect for real-
world deployment. The dataset also emphasizes diverse
affordance scales and shapes, presenting significant chal-
lenges for perception models. By addressing the se-
mantic limitations of traditional visual-only 3D affordance
datasets, LASO bridges the gap between 3D perception and
natural language understanding, encouraging cross-modal
learning. This integration fosters advancements in embod-
ied AI, enabling tasks that require nuanced reasoning and
action in real-world environments.

PIAD. The Point-Image Affordance Dataset (PIAD) [22]
is specifically curated to advance the task of grounding 3D
object affordances using 2D interactions. PIAD consists of
7,012 point clouds and 5,162 images, spanning 23 ob-
ject classes and 17 affordance categories. Unlike other
datasets, PIAD pairs point clouds with images that demon-
strate corresponding affordances. For example, a point
cloud of a “Chair” affords “Sit,” and its paired image de-
picts a person sitting on a chair. These cross-modal pairings
ensure consistency in affordance relationships while lever-

aging distinct modalities.

PIAD introduces two distinct evaluation settings:

• Seen Setting: In this setting, both objects and affordances
in the training and testing sets are consistent. Point clouds
and images of the same object categories and affordance
types are included during training, allowing models to
learn affordance relationships in a supervised manner.
This standard evaluation setting enables benchmarking on
familiar object-affordance combinations.

• Unseen Setting: The Unseen partition presents a more
challenging evaluation by excluding certain object cate-
gories from the training set entirely. For instance, some
object categories are entirely unseen during training. This
partition tests the ability of methods to transfer affordance
knowledge across completely novel object instances and
contexts, simulating real-world scenarios where interac-
tion data is sparse or varied.

Annotations in PIAD include detailed affordance labels
for point clouds, represented as heatmaps indicating the
likelihood of affordance at each point. Paired images are
annotated with bounding boxes for interactive subjects and
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objects, along with affordance category labels. This com-
prehensive annotation schema supports diverse affordance-
learning paradigms and provides a robust benchmark for
evaluating models in both Seen and Unseen scenarios.

Note that PIAD does not include language annotations.
Since PIAD and LASO share the same object classes, affor-
dance categories, and the same 58 affordance-object pair-
ings, we reuse LASO’s language annotations for PIAD. For
each object and affordance category label in PIAD, we ran-
domly select a question from LASO’s question dataset cor-
responding to that affordance-object pairing.

B.2. Evaluation Metrics
To comprehensively evaluate the performance of our
method, we employ four widely used metrics: AUC, aIoU,
SIM, and MAE. Each metric is designed to assess differ-
ent aspects of affordance prediction, providing a robust and
multi-faceted evaluation framework. Below, we detail the
formulation and significance of each metric:
• Area Under the ROC Curve (AUC) [11]: AUC mea-

sures the model’s ability to distinguish between regions
of high and low affordance saliency on the point cloud.
Specifically, the saliency map is treated as a binary clas-
sifier at various threshold levels, and a Receiver Operat-
ing Characteristic (ROC) curve is generated by plotting
the true positive rate (TPR) against the false positive rate
(FPR) at each threshold. AUC provides a single scalar
value summarizing the overall performance, where higher
values indicate better discrimination ability. It is particu-
larly useful for comparing models’ effectiveness in high-
lighting affordance-relevant regions.

• Average Intersection over Union (aIoU) [13]: IoU is a
standard metric for comparing the similarity between two
arbitrary regions—in this case, the predicted affordance
region and the ground truth. It is defined as the size of the
intersection between the two regions divided by the size
of their union:

IoU =
TP

TP + FP + FN
, (1)

where TP , FP , and FN denote true positives, false posi-
tives, and false negatives, respectively. The aIoU extends
this metric to compute the average IoU across all cate-
gories and test samples, providing a quantitative measure
of the overlap between predicted and labeled affordance
regions. Higher values indicate better alignment between
the prediction and the ground truth.

• Similarity (SIM) [15]: The SIM metric evaluates how
closely the predicted affordance map matches the ground
truth by summing the minimum values at each point. For
normalized prediction and ground truth maps P and Q,
the similarity is calculated as:

SIM(P,Q) =
∑
i

min(Pi, Qi), (2)

where the inputs are normalized such that
∑

i Pi =∑
i Qi = 1. SIM provides a measure of how well the

model captures the relative affordance distribution across
the point cloud. A higher similarity score reflects greater
consistency between the predicted and true maps, mak-
ing it a valuable metric for evaluating spatial prediction
fidelity.

• Mean Absolute Error (MAE) [19]: MAE quantifies the
average absolute difference between the predicted affor-
dance values and the ground truth, offering a direct mea-
sure of prediction accuracy. For n points in a point cloud,
it is calculated as:

MAE =
1

n

n∑
i=1

|ei| , (3)

where ei is the point-wise error. MAE is particularly use-
ful for evaluating overall prediction quality by penalizing
larger deviations. Lower MAE values indicate better per-
formance, as they reflect a smaller error margin between
the predicted and ground truth affordance scores.

Together, these metrics provide a comprehensive frame-
work to benchmark the performance of affordance predic-
tion models. AUC evaluates ranking capability, aIoU mea-
sures spatial overlap, SIM assesses prediction similarity,
and MAE quantifies overall prediction accuracy. By com-
bining these complementary metrics, we ensure a holistic
evaluation of model performance under diverse scenarios.

B.3. Baselines
We evaluate our method against state-of-the-art approaches
on both the PIAD and LASO datasets. Among these,
LASO [9] is the closest to our method, as it also gener-
ates affordance scores based on textual cues. Addition-
ally, we include 3D cross-modal baselines such as 3D-
SPS [12], and image segmentation methods like Refer-
Trans [8] and RelA [10], which leverage vision-language
models for cross-modal alignment. Results for these meth-
ods are referenced directly from the LASO paper.

On the PIAD dataset, we compare against IAGNet [22],
a method that grounds 3D affordances by transferring
knowledge from demonstration images into point clouds.
Furthermore, this benchmark includes advanced image-
point cloud cross-modal methods, including MBDF [16],
PMF [23], FRCNN [21], ILN [2], PFusion [20], and
XMF [1]. These baselines align image and point cloud
features in various ways. Results for these baselines are
taken from the IAGNet paper, except for LASO, which is
retrained in the PIAD setting.

Below is a brief introduction to the baselines:
• LASO [9]: Generates affordance segmentation masks us-

ing textual-conditioned affordance queries, focusing on
cross-modal alignment between text and 3D objects.
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Table C. Computational costs comparison on LASO dataset.

Method Train(ms/it) Infer(ms/it)

2D 3D 3D

LASO [9] - 31.72 17.70
GEAL 32.04 40.44 18.89

• IAGNet [22]: Grounds 3D affordances by transfer-
ring knowledge from 2D demonstration images to point
clouds, leveraging cross-modal affordance reasoning.

• 3D-SPS [12]: A 3D visual grounding method that selects
linguistic keypoints for affordance segmentation, adapted
by removing its bounding box prediction module.

• ReLA [10]: Originally designed for image-based refer-
ring expression segmentation, it segments point clouds
based on language expressions by adapting image region
features to grouped point features.

• ReferTrans [8]: A transformer-based architecture for
image-based expression segmentation, modified for point
clouds by replacing the image backbone with a 3D back-
bone and focusing solely on mask prediction.

• MBDF-Net (MBDF) [16]: Employs an Adaptive Atten-
tion Fusion (AAF) module for cross-modal feature fusion,
with modifications to exclude camera intrinsic parame-
ters.

• PMF [23]: Uses a residual-based fusion model to com-
bine image and point cloud features, incorporating con-
volution and attention, while omitting perspective projec-
tion.

• FusionRCNN (FRCNN) [21]: Fuses proposals extracted
from images and point clouds through iterative self-
attention and cross-attention mechanisms.

• ImloveNet (ILN) [2]: Projects image features into 3D
space using a learnable mapping, and fuses these with
point cloud features using an attention mechanism.

• PointFusion (PFusion) [20]: Performs dense fusion by
combining global and point-wise features extracted sepa-
rately from point clouds and images.

• XMFnet (XMF) [1]: Fuses localized features from point
clouds and images using a combination of cross-attention
and self-attention, originally designed for cross-modal
point cloud completion.

C. Additional Quantitative Results
In this section, we provide additional quantitative results,
i.e., the class-wise and corruption-wise evaluation metrics,
and the computational cost comparison to demonstrate the
effectiveness of our method.

C.1. Complete Results on PIAD
The complete results of the comparative methods for all ob-
ject categories in the Seen and Unseen partitions of the

PIAD dataset [22] are provided in Tab. D and Tab. E, re-
spectively.

C.2. Complete Results on LASO
The complete results of the comparative methods for all
object categories in the Seen and Unseen partitions of the
LASO dataset [9] are provided in Tab. F and Tab. G, respec-
tively.

C.3. Computation Resources
As detailed in the main text, we first train the 2D branch,
then train the 3D branch while inferring the 2D branch
to propagate knowledge. During inference, only the 3D
branch is used, avoiding slow 2D feature extraction and
Gaussian initialization. Tab. C shows GEAL achieves com-
parable inference efficiency to LASO. While training time
is not specifically optimized (as this is not the primary fo-
cus of our work or previous studies), it remains affordable
(within one day totally). Experiments were conducted on an
NVIDIA RTX A5000 24GB GPU and an AMD EPYC 32-
core CPU. Efficiency is measured by average per-instance
training/inference time.

D. Additional Qualitative Results
In this section, we provide more qualitative results (visual
examples) to demonstrate the effectiveness of our method.

D.1. Additional Qualitative Results on PIAD-C
We include additional qualitative results of GEAL and
LASO [9] on the PIAD-C dataset in Fig. C.

D.2. Additional Qualitative Results on PIAD
We include additional qualitative results of GEAL and
LASO [9] on the PIAD dataset in Fig. D.
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Table D. The category-wise results for LASO [9] and GEAL (Ours) on the Seen partition of the PIAD dataset [22]. AUC and aIOU scores
are reported in percentages (%).

LASO [9] GEAL (Ours)
# Category aIOU ↑ AUC ↑ SIM ↑ MAE ↓ aIOU ↑ AUC ↑ SIM ↑ MAE ↓

1 Bag • 23.4 83.3 0.567 0.090 24.0 85.1 0.588 0.088
2 Bed • 21.1 87.3 0.587 0.097 22.7 88.1 0.595 0.091
3 Bowl • 7.4 76.2 0.736 0.114 9.8 84.1 0.761 0.105
4 Clock • 7.5 91.5 0.473 0.077 11.1 92.5 0.596 0.051
5 Dishwash • 24.7 91.9 0.464 0.069 26.2 92.9 0.496 0.058
6 Display • 32.5 91.5 0.719 0.083 37.7 91.3 0.726 0.104
7 Door • 10.1 81.2 0.437 0.064 11.0 83.8 0.395 0.054
8 Earphone • 18.8 85.9 0.615 0.094 21.6 87.6 0.654 0.086
9 Faucet • 19.9 79.9 0.517 0.099 19.1 83.6 0.602 0.078
10 Hat • 4.7 65.9 0.604 0.148 7.8 74.2 0.620 0.133
11 StorageFurniture • 17.3 87.2 0.419 0.077 20.8 87.5 0.430 0.065
12 Keyboard • 14.8 81.2 0.249 0.059 15.2 84.6 0.257 0.048
13 Knife • 15.5 89.8 0.671 0.060 23.5 94.1 0.717 0.046
14 Laptop • 29.2 94.1 0.566 0.072 31.2 94.2 0.575 0.069
15 Microwave • 30.1 96.8 0.524 0.037 35.5 96.9 0.545 0.037
16 Mug • 10.7 76.5 0.578 0.107 17.5 77.2 0.607 0.091
17 Refrigerator • 23.2 87.1 0.473 0.070 24.7 89.6 0.460 0.070
18 Chair • 27.5 88.1 0.649 0.094 28.5 89.0 0.652 0.066
19 Scissors • 24.1 91.2 0.631 0.055 31.9 95.8 0.698 0.040
20 Table • 10.1 78.2 0.627 0.129 11.4 79.1 0.639 0.135
21 TrashCan • 11.9 67.4 0.323 0.143 16.2 68.8 0.385 0.146
22 Vase • 10.3 72.0 0.608 0.120 12.5 72.4 0.612 0.116
23 Bottle • 23.5 77.3 0.552 0.110 27.8 79.8 0.536 0.107

Table E. The category-wise results for LASO [9] and GEAL (Ours) on the Unseen partition of the PIAD dataset [22]. AUC and aIOU
scores are reported in percentages (%).

LASO [9] GEAL (Ours)
# Category aIOU ↑ AUC ↑ SIM ↑ MAE ↓ aIOU ↑ AUC ↑ SIM ↑ MAE ↓

1 Bed • 12.0 78.0 0.469 0.126 12.8 78.4 0.473 0.120
2 Dishwasher • 17.3 84.9 0.338 0.079 18.3 89.8 0.440 0.060
3 Laptop • 4.5 65.4 0.192 0.122 6.3 74.5 0.201 0.100
4 Microwave • 14.4 83.4 0.365 0.066 15.8 89.6 0.402 0.049
5 Scissors • 3.2 66.5 0.310 0.107 3.7 69.8 0.333 0.123
6 Vase • 5.2 58.1 0.455 0.140 6.4 54.9 0.466 0.127
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Table F. The category-wise results for LASO [9] and GEAL (Ours) on the Seen partition of the LASO dataset [9]. AUC and aIOU scores
are reported in percentages (%).

LASO [9] GEAL (Ours)
# Category aIOU ↑ AUC ↑ SIM ↑ MAE ↓ aIOU ↑ AUC ↑ SIM ↑ MAE ↓

1 Bag • 19.8 85.4 0.535 0.085 20.6 86.7 0.572 0.084
2 Bed • 13.6 77.4 0.515 0.111 16.0 79.9 0.527 0.110
3 Bowl • 8.6 81.3 0.777 0.102 12.2 87.4 0.807 0.102
4 Clock • 6.2 84.2 0.461 0.064 9.8 84.8 0.485 0.062
5 Dishwash • 29.6 94.1 0.472 0.070 28.5 89.9 0.505 0.068
6 Display • 31.0 92.2 0.700 0.086 41.1 92.6 0.718 0.088
7 Door • 12.3 82.3 0.311 0.060 15.7 83.8 0.368 0.058
8 Earphone • 26.5 93.0 0.639 0.099 27.5 94.0 0.662 0.094
9 Faucet • 14.2 78.9 0.498 0.089 18.3 84.3 0.589 0.087
10 Hat • 3.6 67.0 0.538 0.152 9.3 72.7 0.560 0.148
11 StorageFurniture • 19.2 88.6 0.437 0.067 24.7 89.3 0.481 0.066
12 Keyboard • 12.0 89.0 0.227 0.055 12.9 87.9 0.232 0.039
13 Knife • 14.8 91.3 0.642 0.064 22.9 93.2 0.657 0.063
14 Laptop • 28.5 95.1 0.583 0.078 29.8 95.1 0.586 0.070
15 Microwave • 27.2 96.1 0.440 0.042 31.8 92.8 0.464 0.038
16 Mug • 13.3 78.1 0.547 0.098 21.7 87.6 0.635 0.076
17 Refrigerator • 25.6 92.8 0.433 0.063 24.8 93.7 0.484 0.069
18 Chair • 28.9 89.9 0.650 0.093 28.7 89.9 0.678 0.091
19 Scissors • 17.5 95.4 0.661 0.053 24.9 95.9 0.684 0.045
20 Table • 10.1 81.7 0.662 0.119 10.8 81.6 0.690 0.115
21 TrashCan • 10.9 72.1 0.323 0.137 27.8 90.4 0.499 0.100
22 Vase • 7.9 71.1 0.630 0.125 13.5 79.5 0.650 0.116
23 Bottle • 20.4 81.2 0.553 0.114 28.7 81.9 0.570 0.116

Table G. The category-wise results for LASO [9] and GEAL (Ours) on the Unseen partition of the LASO dataset [9]. AUC and aIOU
scores are reported in percentages (%).

LASO [9] GEAL (Ours)
# Category aIOU ↑ AUC ↑ SIM ↑ MAE ↓ aIOU ↑ AUC ↑ SIM ↑ MAE ↓

1 Bag • 20.7 89.1 0.513 0.089 22.1 91.0 0.522 0.086
2 Bed • 12.2 80.6 0.553 0.115 13.6 81.4 0.563 0.113
3 Bowl • 7.5 81.3 0.744 0.125 9.1 82.5 0.749 0.119
4 Clock • 5.3 85.2 0.419 0.094 6.4 85.0 0.433 0.079
5 Dishwash • 20.7 92.4 0.443 0.069 26.0 92.4 0.470 0.065
6 Display • 23.4 86.6 0.512 0.112 25.0 87.6 0.526 0.112
7 Door • 3.4 81.3 0.324 0.095 11.7 81.4 0.355 0.066
8 Earphone • 9.5 76.8 0.454 0.130 20.8 93.5 0.639 0.091
9 Faucet • 13.8 74.1 0.442 0.098 15.1 76.8 0.470 0.095
10 Hat • 4.5 61.2 0.586 0.158 4.1 66.5 0.582 0.149
11 StorageFurniture • 17.9 88.1 0.422 0.069 18.3 88.3 0.423 0.067
12 Keyboard • 3.1 74.6 0.138 0.082 3.3 79.4 0.137 0.078
13 Knife • 15.3 91.7 0.643 0.053 15.4 91.2 0.675 0.059
14 Laptop • 8.7 79.7 0.334 0.096 29.3 95.6 0.610 0.064
15 Microwave • 11.9 90.9 0.317 0.063 14.2 91.5 0.318 0.064
16 Mug • 1.7 64.5 0.381 0.174 2.5 66.6 0.511 0.157
17 Refrigerator • 20.1 87.2 0.378 0.066 21.0 89.4 0.390 0.065
18 Chair • 25.2 87.4 0.642 0.098 26.0 89.4 0.624 0.094
19 Scissors • 1.6 25.3 0.094 0.105 2.1 27.6 0.105 0.097
20 Table • 7.5 70.4 0.604 0.135 7.8 72.1 0.620 0.129
21 TrashCan • 2.6 63.1 0.191 0.124 7.4 71.0 0.293 0.125
22 Vase • 6.4 56.4 0.466 0.148 7.6 67.0 0.614 0.140
23 Bottle • 16.2 78.5 0.455 0.134 21.2 78.2 0.519 0.119
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Point out the areas on the display ideal for displaying.

Where would you grasp the mug, and what makes you 
choose that part?

If you pour water into the bottle, which points will the 
water first touch when it falls into the bottle?
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Figure C. Qualitative comparisons between GEAL and LASO [9] on the PIAD-C dataset, highlighting the superior robustness of our
method on corrupted data.
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Describe your grasp method on the knife

1

0

Could grasping the mug be done differently?

If you want to ensure the trashcan doesn’t get 
damaged, what part would you open?

1

0

1

0

Identify the key points on the bottle that 
ensure a successful opening experience. 

How would you approach sitting the chair to 
maintain its condition?

Best microwave open method? 

Any tips on grasping the mug efficiently? Your preferred open point on dishwasher?

1

0
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1

0

1
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1

0

Figure D. Qualitative comparisons between GEAL and LASO [9] on the PIAD dataset.
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E. Broader Impact & Limitations
In this section, we discuss the societal impact, broader im-
pact, and potential limitations of this work.

E.1. Societal Impact
The proposed framework for 3D affordance learning has
significant societal implications, enabling embodied intelli-
gence for effective robot and AI interaction with surround-
ings. This advancement can enhance automated systems’
efficiency and safety in fields like healthcare, elderly care,
and disaster response, where understanding object affor-
dances is critical. This technology also has the potential to
empower individuals with disabilities by enabling assistive
robots to perform tasks such as fetching, opening, or manip-
ulating objects. Applications in education and augmented
or virtual reality could transform learning and entertainment
by offering immersive and interactive experiences.

E.2. Broader Impact
Affordance learning can redefine robotics automation by
improving autonomy and adaptability in industries. In
manufacturing, it allows robots to handle diverse objects
with minimal reprogramming, optimizing workflows and
reducing human workload. In agriculture and environmen-
tal monitoring, affordance-aware systems can adapt to dy-
namic environments for precise operations. Integrating af-
fordance grounding with augmented and virtual reality en-
ables new possibilities in training, simulation, and inter-
active applications. This could drive innovations in medi-
cal training, such as AR-guided surgeries, and in gaming,
offering intuitive and immersive user experiences through
affordance-based interactions.

E.3. Potential Limitations
Despite its advantages, the proposed framework may en-
counter certain limitations:
• Limited Generalization for Internal Affordances: The

framework struggles to accurately perceive and general-
ize affordances associated with the internal properties of
objects, such as the ”contain” affordance of a bottle. This
limitation arises because point cloud processing primar-
ily focuses on an object’s external surface, often neglect-
ing internal structures. Furthermore, the scarcity of high-
quality data representing internal affordances, hampers
the system’s ability to generalize on such affordances.

• Ethical Concerns: In applications such as surveillance
or autonomous decision-making, the deployment of the
framework introduces potential ethical concerns. Misuse
of the technology could infringe on privacy or lead to
a lack of accountability in critical decision-making sce-
narios, highlighting the importance of establishing robust
ethical guidelines for its use.

• Resource Intensity: Training and deploying such so-
phisticated models demand significant computational re-
sources, which can pose a challenge for smaller organiza-
tions or regions with limited access to advanced technol-
ogy infrastructure. This barrier may restrict the broader
adoption of the framework in resource-constrained envi-
ronments.

F. Public Resource Used
In this section, we acknowledge the use of the following
public resources, during the course of this work:
• LASO1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• IAGNet2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• PointCloud-C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• OOAL4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License
• DreamGaussian5 . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• LangSplat6 . . . . . . . . . . . . . . . . Gaussian-Splatting License

1https://github.com/yl3800/LASO
2https://github.com/yyvhang/IAGNet
3https://github.com/ldkong1205/PointCloud-C
4https://github.com/Reagan1311/OOAL
5https://github.com/dreamgaussian/dreamgaussian
6https://github.com/minghanqin/LangSplat
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