
JamMa: Ultra-lightweight Local Feature Matching with Joint Mamba

Supplementary Material

The supplementary material for JamMa is organized as
follows: Sec. A reports the evaluation setups of pose estima-
tion experiments in the MegaDepth dataset. Sec. B provides
additional details on the Mamba block and MLP-Mixer em-
ployed in JamMa. Sec. C presents further qualitative and
quantitative experiments, along with discussions.

Category Method Image Keypoint Match

Sparse

XFeat 1600 4096 -
SP + SG 1600 2048 -
SP + LG 1600 2048 -

DeDoDeB 784 10000 -
DeDoDeG 784 10000 -

Dense All 672 - 5000
Semi-Dense All 832 - -

Table S1. Evaluation Setups in the MegaDepth [5] Dataset.

A. MegaDepth Setups
As shown in Tab. S1, we follow the evaluation setup spec-
ified for each method to optimize their performance. For
XFeat, images are resized such that the larger dimension is
1600 pixels, with 4096 keypoints extracted per image. For
SuperGlue and LightGlue, the larger dimension is similarly
resized to 1600 pixels, and 2048 SuperPoint keypoints are
extracted per image. For DeDoDe, images are resized to
784× 784, with 10000 keypoints extracted per image. For
the dense methods DKM and RoMa, images are resized to
674 × 674, and 5000 balanced matches are sampled using
the KDE-based method introduced by DKM. For all semi-
dense methods [1, 8, 11, 12], images are resized and padded
to 832 × 832. In the efficiency evaluation, we report the
parameters, FLOPs and runtime of the full sparse matching
pipelines, including detection, description and matching. All
methods utilize LO-RANSAC with an inlier threshold of 0.5
for pose estimation.

B. Details
B.1. Mamba Block

Details of the Mamba block [4] are provided in Fig. S1 and
Alg. S1. B and N denote the batch size and sequence length,
respectively. C1 denotes the coarse feature dimension, which
is 256. The SSM dimension Cs is set to 16, and the expanded
state dimension Ce is set to 512. The input sequence S is first
normalized by the layer normalization LN and then linearly
projected to X′ and Z, both with a dimension size of Ce. A
1D convolution followed by the SiLU nonlinearity is applied
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Figure S1. Mamba Block.

Algorithm S1 Mamba Block
Require: input sequence S : (B, N, C1)
Ensure: output sequence S̃ : (B, N, C1)

1: S′ : (B, N, C1)← LayerNorm(S)
2: X′ : (B, N, Ce)← LinearX(S′)
3: Z : (B, N, Ce)← LinearZ(S′)
4: X : (B, N, Ce)← SiLU(Conv(X′))
5: /* compute SSM parameters, “Param” in Fig. S1 */
6: P∆ : (B, N, Ce)← Parameter
7: ∆ : (B, N, Ce)← Softplus(Linear∆(X) +P∆)
8: A′ : (Ce, Cs)← Parameter
9: B′ : (B, N, Cs)← LinearB(X)

10: A,B : (B, N, Ce, Cs)←Discretize(A′,B′,∆)
11: C : (B, N, Cs)← LinearC(X)
12: /* SSM recurrent*/
13: h : (B, Ce, Cs)← zeros (B, Ce, Cs)
14: Y : (B, N, Ce)← zeros (B, N, Ce)
15: for i in {0, ..., N-1} do
16: h = A[:, i, :, :]h+B[:, i, :, :]X[:, i, :, None]
17: Y′[:, i, :] = hC[:, i, :]
18: end for
19: /* get gated Y */
20: Y : (B, N, Ce)←Y′ ⊙SiLU(Z)
21: /* residual connection */
22: S̃ : (B, N, C1)← LinearS(Y) + S
23: Return: S̃

to X′, producing X, which is then linearly projected to B′,
C, and ∆. ∆ is used to discretize A′ and B′, resulting in A
and B. The state-space model (SSM) computes Y′, which
is then gated by Z to generate Y. The output sequence S̃ is
obtained through the residual connection of Y and S.

Note that the for loop in Alg. S1, i.e., SSM recurrent,
can be computed once by a global convolution as

K = (CB,CAB, ...,CAN−1B),

Y′ = X⊛K,
(S1)

where ⊛ denotes the convolution operation.
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Figure S2. Effective Receptive Field with Different Aggregators. All three aggregators expand the local receptive field to a receptive field
spread over the image pair.
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Figure S3. Three Types of Aggregators.

B.2. MLP-Mixer

The MLP-Mixer [9] is a purely MLP-based network that first
performs spatial mixing using token-wise MLPs, followed
by channel mixing using channel-wise MLPc.

Fmid = Fin +MLPs(Fin),

Fout = Fmid +MLPc(Fmid).
(S2)

In fine matching module, two 5× 5 fine feature windows
F̂ f
A, F̂

f
B ∈ RM×25×C2 are spatially concatenated to form

F̂ f ∈ RM×50×C2 , which is processed by a MLP-Mixer.
In sub-pixel refinement module, two fine features

F s
A, F

s
B ∈ RM×1×C2 are concatenated along the channel

dimension, resulting in F s ∈ RM×1×2C2 . The MLP and
Tanh activation are then employed to regress the offsets
δxA, δ

y
A, δ

x
B , δ

y
B of the matching points in images IA and IB .

C. More Experiments

C.1. Ablation Study on Aggregator

As shown in Tab. S2 and Fig. S2, we conduct additional abla-
tion studies on the aggregator. We evaluate an average pool-
ing layer with a kernel size of 3, referred to as Pool3, which
represents the simplest parameter-free aggregator. As illus-
trated in Fig. S2, compared to JamMa without an aggregator,
Pool3 extends the effective receptive field to a receptive field
spread over the image pair. As shown in Tab. S2(1), the min-
imalist aggregator Pool3 achieves a performance improve-
ment of (+1.0%,+0.8%,+0.9%), validating the importance

Method Pose est. AUC

@5◦ @10◦ @20◦

w/o Aggregator 62.3 75.1 84.3
(1) Pool3 63.3 75.9 85.2
(2) Conv3 64.2 76.9 86.0
(3) GCU3 (JamMa) 64.5 77.3 86.3

Table S2. Ablation Study on Aggregator.
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Figure S4. Effective Receptive Field of Sequential Scan.

of global dependencies and omnidirectionality. Further per-
formance gains are observed when learnable parameters are
incorporated into the aggregators, as shown in Tab. S2(2)(3).
Specifically, the gated convolutional unit (GCN3) improves
the performance by (+2.2%,+2.2%,+2%). Additionally,
we visualize the effective receptive fields of the models be-
fore training in Fig. S2. Training allows Mamba to establish
long-distance dependencies within sequences, while the ag-
gregator extends the sequence dependencies to global depen-
dencies.

C.2. Effective Receptive Field of Sequential Scan.

As shown in Fig. S4, we compare the effective receptive
fields of JamMa using sequential and joint scan. Sequen-
tial scan primarily emphasizes internal interactions within
a single image but exhibits limited perception of the other
image. In contrast, joint scan enables more comprehensive
mutual interactions, making it better suited for image match-
ing tasks that require establishing correspondences between
two images.
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Figure S5. Visualization of the Coarse-to-Fine Matching Module. Zoom in for a clearer view.

Method Day Night
(0.25m, 2◦) / (0.5m, 5◦) / (1m, 10◦)

DeDoDeB [3] 87.4 / 94.7 / 98.5 70.7 / 88.0 / 97.9
SP [2]+LG [6] 89.6 / 95.8 / 99.2 72.8 / 88.0 / 99.0
LoFTR [8] 88.7 / 95.6 / 99.0 78.5 / 90.6 / 99.0
ASpanFormer [1] 89.4 / 95.6 / 99.0 77.5 / 91.6 / 99.0
JamMa 87.7 / 95.1 / 98.4 73.3 / 91.6 / 99.0

Table S3. Visual Localization on the Aachen Day-Night Bench-
mark v1.1 [13].

C.3. Visual Localization

Dataset. We evaluate our method on the Aachen Day-Night
v1.1 benchmark [13], which includes 824 day-time and 191
night-time images selected as query images for outdoor vi-
sual localization.
Metric. We employ the open-source HLoc pipeline [7]
for localization and report the percentage of successfully
localized images under three error thresholds: (0.25m, 2◦),
(0.5m, 5◦), and (1m, 10◦).
Results. As shown in Tab. S3, JamMa demonstrates perfor-
mance comparable to LoFTR and ASpanFormer in outdoor
visual localization tasks. Note that JamMa is significantly
more lightweight, achieving over a 2× reduction in parame-
ters and runtime speedup.

C.4. Advantage in Low-Resolution Images.

Quantitative comparisons on low-resolution images are pre-
sented in Fig. S6. The results demonstrate that JamMa out-
performs ELoFTR by a substantial margin of +15.8% at a
resolution of 256, while also achieving higher speed. This
highlights JamMa’s potential for resource-constrained ap-
plications that demand extreme efficiency (>100 FPS). The
superior performance of JamMa in low-resolution scenarios
is attributed to shorter input sequences, which alleviate the
perceptual attenuation issue of Mamba, i.e., the tendency to
overlook distant features within a sequence.

C.5. Visualization of Coarse-to-Fine Module.

We adopt the coarse-to-fine matching module proposed
in XoFTR [10], which first performs classification-based
(CLS-based) coarse matching on coarse grids, followed by
classification-based fine matching on fine grids, and finally
regression-based (REG-based) sub-pixel refinement. As
shown in Fig. S5, coarse matching on 1/8 resolution grids of-

+15.8%

-31.6%

JamMa AUC

JamMa Runtime 

ELoFTR AUC

ELoFTR Runtime LoFTR Runtime

LoFTR AUC

Figure S6. Comparison in Low-Resolution Images.

Method Time Pose est. AUC

(ms) @5◦ @10◦ @20◦

JamMa 61.8 64.5 77.3 86.3
(1) w/o sub-pixel ref. 60.2 62.1 75.5 84.7
(2) w/ C2F of LoFTR 54.4 61.8 74.9 84.4

Table S4. Ablation Study on Coarse-to-Fine Module. The ref.
and C2F denote refinement and coarse-to-fine module, respectively.

ten lacks precision, particularly for small-scale images. Fine
matching on 1/2 resolution grids significantly enhances pre-
cision, while regression-based refinement further improves
accuracy to the sub-pixel level.

C.6. Ablation Study on Coarse-to-Fine Module

We evaluate the coarse-to-fine module in LoFTR and the
coarse-to-fine module in XoFTR without sub-pixel refine-
ment. As shown in Tab. S4(1), sub-pixel refinement super-
vised by epipolar distance enhances performance by allow-
ing regression-based matching points to achieve sub-pixel
accuracy. Although the coarse-to-fine module in LoFTR is
faster, its performance is hindered by two key limitations: 1)
one-to-one coarse matching struggles in scenes with signifi-
cant scale variations, and 2) its fine matching does not adjust
matching points in the source image.

C.7. More Qualitative Comparisons

We provide additional qualitative comparisons of JamMa
with LightGlue and ELoFTR in Fig. S9. JamMa consis-
tently delivers robust matching results with shorter runtime,
achieving lower pose estimation errors. Further qualitative
comparisons for indoor and outdoor scenes are shown in
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Figure S7. Challenging Scenes.

Figure S8. Failure Cases.

Fig. S10 and Fig. S11, with matched points color-coded for
clarity.

C.8. Challenging Scenes.

Qualitative comparisons in challenging scenarios are pre-
sented in Fig. S7. All methods exhibit a significant reduction
in the number of matches under drastic illumination and
scale variations. Nevertheless, JamMa maintains a higher
number of correct matches, resulting in more robust pose
estimation.

C.9. Failure Cases.

Failure cases of JamMa are illustrated in Fig. S8. These
cases typically arise in scenarios with extreme scale and
viewpoint variations or in texture-less regions.
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Figure S9. Comparison of qualitative results. The reported metrics include precision with an epipolar error threshold of 1× 10−4, rotation
and translation errors in pose estimation, and runtime.
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Figure S10. Additional qualitative comparisons in outdoor scenes. The matched points are visualized as the same color.
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Figure S11. Additional qualitative comparisons in indoor scenes. The matched points are visualized as the same color.
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