
Matrix3D: Large Photogrammetry Model All-in-One

Supplementary Material

Here, we present an additional description of the model
architecture(Sec. 7), dataset preprocessing(Sec. 8), training
details(Sec. 9), and experiments(Sec. 10).

7. Model Architecture
For RGB data, we use DINOv2 [70] and Stable Diffu-
sion [82] VAE to extract deep features from pixels be-
fore sending them into the modality-specific encoders. The
modality-specific encoders are composed of stacked convo-
lution and linear layers following [71] to patchify image-
like 2D data into 1D tokens. The patchify scale for RGB,
pose, and depth are set to 2, 1, and 4. After the tokens
are processed by the transformer, we use similar modality-
specific linear layers [71] to unpatchify each modality to-
ken back to the original shape according to the correspond-
ing patchify scales. The whole multi-view transformer en-
coder includes 20 self-attention blocks with a hidden size of
1024, while the decoder includes 40 stacked self-attention
and cross-attention blocks with a hidden size of 1408 fol-
lowing HunyuanDiT [51].

For classifier-free guidance (cfg), we empirically found
the following settings to perform best: 1.5 for RGB / poses,
and 1.0 for depth (w/o cfg).

8. Dataset Pre-processing
As illustrated in the main paper, we train Matrix3D
on a mixture of six datasets, including Objaverse [19],
MVImgNet [132], CO3D-v2 [79], RealEstate10k [141],
Hypersim [81], and ARKitScenes [4]. In each training
batch, the datasets have a proportion of 4:4:4:4:4:1. Table 8
provides a summary of these datasets used for training, in-
cluding the size (in terms of scenes and images), type (real
or synthetic), scene categories, and supported modalities
(RGB, camera poses, and depths). For all datasets, we ap-
ply scene normalization and camera normalization. Camera
poses are represented as Plücker rays. Note that the depth
images provided in each dataset are not always complete.
Specifically, CO3D-V2 and ARKitScenes provide incom-
plete depth images, while for the Objaverse dataset we only
have the rendered object foreground depth.
Normalization. Due to the highly diverse distributions of
existing datasets, including variations in scale and scene
type, preprocessing them consistently poses a challenge. To
address this, we apply the following normalization.
• Scene Normalization: To normalize the whole scene

scale, we adapt our approach depending on the dataset
type and available modalities. For object-centric
datasets with camera poses provided (i.e., Objaverse [19],

MVImgNet [132], and CO3D-v2 [79]), we follow RayD-
iffusion [137] by setting the intersection point of the in-
put camera rays as the origin of the world coordinates
and defining the scene scale accordingly. For scene-
type datasets that provide depth information (i.e., Hyper-
sim [81] and ARKitScenes [4]), we use the depth of the
first view as a reference, calculating its median value and
normalizing it to 1.0. For those datasets without depth
data (i.e., RealEstate10k [141]), we determine the scale
based on the camera distances to the average positions
and set the maximum distance to 1.0.

• Camera Normalization: We perform camera normaliza-
tion after scene normalization. Specifically, we set the
first view’s camera as the identity camera with rotation
R = I and translation T = [0, 0, 1], while preserving
relative transformations between cameras across views.

Objaverse Rendering. For the Objaverse dataset, we ren-
der all models into RGB and depth images for training.
Specifically, each 3D object is first normalized at the world
center within a bounding box of [−1, 1]3, and we render the
whole scene from 32 random viewpoints. The render cam-
era FoV is set to 50◦. The azimuth and elevation angles
are randomly sampled in [0◦, 360◦] and [−45◦, 90◦]. The
camera distance to the world center is randomly sampled in
[1.1, 1.6], and the height on the z-axis is set in [-0.4, 1.2].
We use a composition of random lighting from area light-
ing, sun lighting, point lighting, and spot lighting.

9. Training Details
Table 7 reports the detailed training hyper-parameter set-
tings of three stages. We didn’t apply any data augmenta-
tion techniques and center-cropped the input images into a
square.

10. Experiments
10.1. DTU Dataset Split for Depth Evaluation

In Sec. 4.3, we use different evaluation set for monodepth
and multi-view depth evaluation. Specifically, we use
the IDR [129] subset for monodepth because perfect fore-
ground masks are provided, and follow previous work [111]
to use the MVSNet [127] subset for multi-view depth eval-
uation.

10.2. Point Cloud Fusion

In Sec. 4.3, we back-project multi-view depth maps to point
cloud. In practice, we additionally conduct geometric con-
sistency filtering and fusion to clean the point cloud. The



Hyper-parameters Ablation Stage 1 Stage 2 Stage 3

Optimizer AdamW [62] AdamW [62] AdamW [62] AdamW [62]
Learning rate 1e-4 1e-4 1e-5 1e-5
Learning rate scheduler Constant Constant Constant Constant
Weight decay 0.05 0.05 0.05 0.05
Adam β (0.9, 0.95) (0.9, 0.95) (0.9, 0.95) (0.9, 0.95)
Max view num 4 4 8 8
Batch size 512 1024 1024 256
Steps 100k 200k 30k 30k
Warmup steps 4k 4k 1k 1k
Initialization HunyuanDiT[51] HunyuanDiT[51] Stage 1 Stage 2
Attention blocks (encoder) 20 20 20 20
Attention blocks (decoder) 40 40 40 40

Image resolutions 256×256 256×256 256×256 512×512
Raymap resolutions 16×16 16×16 16×16 32×32
Depth resolutions 64×64 64×64 64×64 128×128
Datasets Object-centric Object-centric All All

Table 7. Detailed hyper-parameters.

Dataset Size Type Support Modalities
Scenes Images Real/Synthetic Scene Type RGB Poses Depths

Objaverse [19] 800K 25M Synthetic Object-centric ✓ ✓ Foreground only
MVImageNet [132] 220K 6.5M Real Object-centric ✓ ✓ ×
CO3Dv2 [79] 19K 1.5M Real Object-centric ✓ ✓ Incomplete
RealEstate10K [141] 10K 10M Real Indoor/Outdoor Scene ✓ ✓ ×
Hypersim [81] 461 77K Synthetic Indoor Scene ✓ ✓ Complete
ARKitScenes [4] 5K 450K Real Indoor Scene ✓ × Incomplete

Table 8. Dataset details.

Methods GT GT GT Align DTU ETH3D T&T
Pose Range Int. rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑

DeepV2D × × ✓ med 7.7 33.0 11.8 29.3 8.9 46.4
DUSt3R × × × med 2.76 77.32 4.71 61.74 5.54 56.38
Ours × × ✓ med 1.85 85.46 7.83 38.80 6.16 49.43

Table 9. Unposed MVD evaluation on DTU, ETH3D, and T&T.

filtering follows [127, 134], consisting of a combination of
the following operations.

• Geometric filtering. We project the pixels from the refer-
ence view to source views, find the pixel at the projection
location, and project it back to reference view. Then we
check the difference of the original position and the re-
projected position, as well as their depths.

• Geometry fusion. We project all pixels from source views
to the reference views, and each pixel in the reference
view may receive multiple values. We then change the
original depth result to the average or the median of all
the gathered values.

10.3. Ablation Study on Multi-task Training

In this section we compare the model trained by masked
learning and the task-specific models including NVS, pose
estimation and depth estimation. The latter ones have the
same network architecture as the stage 1 model, but the
input/output configuration of the training samples is set to
only one task. All 4 models are trained from HunyuanDiT
[51] initialization with halved batch size and total steps due
to limited time and compute resources. The evaluation met-
rics for each task is the same as the main paper.

Quantitative reuslts are shown in Table 10. The model
with masked learning strategy (Multi-task) surpasses the
task-specific model in the NVS task, but fails for pose esti-
mation and depth estimation. One possible reason is that the
model capacity is shared by different tasks. Another reason
related to practice is that the models for ablation studies do
not fully converge. According to the evaluation curve with
respect to training steps in Figure 8, the model with halved
batch size at 100k steps has similar performance as the full



model at 60k-70k steps which still has large room of im-
provement. Given that our model is initialized by an RGB
diffusion model, the functionality of outputing ray maps and
depth maps may need longer time to converge, and thus
task-specific models achieves better results within limited
training time. Although not a fair comparison, note that all
models for ablation study are weaker than the stage 1 and
the stage 3 model. Also, in Sec. 4.5 we show that the model
trained by masked learning can support flexible input and
boost the performance by utilizing additional input.

10.4. 3D Reconstruction

Camera trajectory generation. We build different camera
trajectories for generating novel views depending on differ-
ent reconstruction tasks. For monocular image input, we
create an orbital trajectory and sample 80 cameras evenly.
All cameras are set as look-at to the world center. For
sparse-view image input, we fitted a spline trajectory from
the input poses, and scaled up the trajectories two times,
resulting in 240(= 80× 3) views.
3DGS optimization. The proposed 3DGS optimization
system in built upon the open-source pipeline [97] with sev-
eral modifications. For each optimization step, we optimize
Gaussian points on mini-batch images instead of single im-
ages. Besides of original L1 loss and SSIM loss, we adopt
additional losses to improve the reconstruction robustness,
including LPIPS loss LLPIPS [139], mask loss Lmask, accu-
mulation regularization Laccum, absolute depth loss Ldepth,
and relative depth ranking loss Lrel-depth [106]. The accu-
mulation regularization is designed to constrain the alpha
values of Gaussian points to be either fully opaque or com-
pletely transparent, aiming to reduce floaters in the scene.
It is composed of a binary cross-entropy loss and entropy
loss:

Laccum = BCE(α, 0.5)− α log(α) + (1− α) log(1− α),

where α denotes the accumulation values.
For monocular 3D reconstruction, the value for each loss

is set to wL1 = 1.0, wSSIM = 0.2, wLPIPS = 10.0, wmask =
5.0, waccum = 5.0. Depth loss is not applied in the optimiza-
tion. The mini-batch size for each step is set to 10. For the
input view, the weight of L1 loss is specifically set to 10.0
for high significance.

For sparse-view 3D reconstruction, the weight values are
set to wL1 = 1.0, wSSIM = 0.2, wLPIPS = 10.0, wmask =
5.0, waccum = 0.5, wdepth = 10.0, wrel-depth = 20.0. The
mini-batch size for each step is set to 5, and the L1 loss
weight of input views is set to 20.

We use the back-projected point cloud as Gaussian point
initialization. Similar to CAT3D [29], we conduct in total
of 1200 and 3000 optimization steps for two tasks, respec-
tively. We apply the scale regularization [118] to constrain
the extreme Gaussian scales.

10.5. Limitation

During experiments, we found that our model performs well
on object-centric and indoor scenes but degrades in outdoor
environments, primarily due to the lack of large-scale out-
door training data—our dataset consists of objects and lim-
ited indoor scenes. The lack of high-quality outdoor data is
a common issue in the community, and similar problem has
been noticed in other models.

Tab. 9 demonstrates unposed depth prediction results on
ETH3D and T&T. Our model performs worse than DUSt3R
(trained on outdoor datasets), but still surpass DeepV2D.

10.6. More visualization

Here we present more visualization results about unposed
sparse-view 3D reconstruction (Fig. 9) and multi-view
depth predictions (Fig. 10).



Methods RRA @ 15◦ ↑ CA @ 0.1↑ Methods PSNR↑ SSIM↑ LPIPS↓ Methods rel↓ τ ↑2 3 4 2 3 4

Pose only 89.2 86.7 85.8 100.0 83.1 77.0 NVS only 16.30 0.77 0.30 Depth only 9.07 26.21
Multi-task 81.1 77.8 75.3 100.0 75.8 64.5 Multi-task 17.21 0.79 0.25 Multi-task 10.76 18.52

Stage 1 92.2 91.5 89.6 100.0 87.8 80.8 Stage 1 18.13 0.81 0.19 Stage 1 4.30 49.81
Stage 3 95.6 96.0 96.3 100.0 93.5 91.7 Stage 3 18.87 0.85 0.21 Stage 3 1.83 85.45

Table 10. Ablation study on multi-task training and task-specific training. Besides different training target, the ablation models have halved
batch size and total steps. The multi-task model achieves better results in NVS task but fails for pose estimation and depth estimation. One
possible reason is that the multi-task model converges slower than the task-specific models. Please refer to Sec. 10.3 for more analysis.

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160 180 200

2 3 4 6 8
16

16.5

17

17.5

18

18.5

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

20 40 60 80 100 120 140 160 180 200

a) Pose (RRA@15◦ ↑) b) NVS (PSNR↑) c) Depth (rel↓)

Figure 8. Evaluation results of stage 1 model for a) pose estimation, b) NVS and c) Depth estimation with respect to training step. For pose
estimation we report the results for multiple view numbers. Note that the stage 1 model is only trained with view number ≤ 4.

Unposed
Sparse Input

Back-Projected 
Point Cloud

3DGS 
Optimization

Rendering Sequences

Figure 9. More unposed sparse-view 3D reconstruction results.



Figure 10. Visualization of multi-view depth prediction results.


	. Introduction
	. Related Work
	. Method
	. Multi-Modal Diffusion Transformer
	. Masked Learning
	. Dataset Preparation
	. Training Setup
	. Downstream Tasks

	. Experiments
	. Pose Estimation
	. Novel View Synthesis
	. Depth Prediction
	. 3D Reconstruction
	. Hybrid Tasks

	. Conclusion
	. Acknowledgments
	. Model Architecture
	. Dataset Pre-processing
	. Training Details
	. Experiments
	. DTU Dataset Split for Depth Evaluation
	. Point Cloud Fusion
	. Ablation Study on Multi-task Training
	. 3D Reconstruction
	. Limitation
	. More visualization




