
ScaMo: Exploring the Scaling Law in Autoregressive Motion Generation Model

Supplementary Material

Contents

A. Flops calculation 2

B. Implmentation Details 2

C. Tokenizer Results 3

D. More Results on HumnaML3D Benchmark 3

E. Dataset Visualization 5

F. FSQ settings 5

G. More Generation Visualizations 6

H. Limitations 7

A. Flops calculation
In this paper, we follow the criteria proposed by OpenAI [5] to calculate the floating point operations (FLOPs). The detailed
breakdown of these computations is provided in Tab. 1. Additionally, to facilitate reproducibility, we present the complete
code for this calculation process in Code 1.

By utilizing the provided code, we can quickly compute the FLOPs for their specific model configurations, facilitating
performance analysis and design optimization.

Operation Parameters FLOPs per Token

Embed (nvocab + nctx)dmodel 4dmodel
Attention: Q, K, V nlayer × dmodel × 3dattn 2nlayer × dmodel × 3dattn
Attention: Mask – 2nlayer × nctx × dattn
Attention: Projection nlayer × dattn × dmodel 2nlayer × dattn × dmodel
Feedforward nlayer × 2dmodel × dff 2nlayer × 2dff
De-embed – 2dmodel × nvocab
Total (Non-Embedding) N = 2dmodel × nlayer(2dattn + dff) Cforward = 2N + 2nlayer × nctx × dattn

Table 1. Details of FLOPs calculation criteria by OpenAI [5].

1 def openai_flops_per_token(n_layers, n_heads, d_model, n_ctx, n_vocab, ff_ratio=4):
2 """Open AI method for forward pass FLOPs counting of decoder-only Transformer
3 """
4 d_attn = d_model // n_heads
5 d_ff = d_model * ff_ratio
6

7 embeddings = 4 * d_model
8 attn_qkv = 2 * n_layers * d_model * 3 * (d_attn * n_heads)
9 attn_mask = 2 * n_layers * n_ctx * (d_attn * n_heads)

10 attn_project = 2 * n_layers * (d_attn * n_heads) * d_model
11 ff = 2 * n_layers * 2 * d_model * d_ff
12 logits = 2 * d_model * n_vocab
13

14 return embeddings + attn_qkv + attn_mask + attn_project + ff + logits

Code 1. Open AI method for forward pass FLOPs counting of decoder-only Transformer.

B. Implmentation Details
The framework is implemented using PyTorch. For the Motion FSQ-VAE, both the encoders and decoders are designed as
convolutional residual blocks, utilizing a downsampling factor of 4. The transformer architecture closely aligns with that
of LLaMA. Specifically, each block incorporates RMSNorm prior to both the prefix attention layer and the feed-forward
network (FFN) layer. We train the transformers using bf16 to reduce the memory. We do not use the masking strategy in [8].
The optimization details are shown in Tab. 2.

Config Tokenizer Transformer

optimizer AdamW AdamW
optimizer momentum 0.9 0.9
weight decay 0.0 1e-06
learning rate schedule MultiStepLR Warmup and Cosine decay
milestone ratio 0.6 -
warmup ratio 0.003 0.1

Table 2. The optimizer details.

For motion representation, we follow HumanML3D [8]. HumanML3D Format proposes a motion representation x1:L

inspired by motion features in character control. This redundant representation is quite suited to neural models, particularly
variational autoencoders. Specifically, the i-th pose xi is defined by a tuple of root angular velocity ra ∈ R along Y-axis, root
linear velocities (rx, rz ∈ R) on XZ-plane, root height ry ∈ R, local joints positions jp ∈ R3Nj , velocities jv ∈ R3Nj and
rotations jr ∈ R6Nj in root space, and binary foot-ground contact features cf ∈ R4 by thresholding the heel and toe joint
velocities, where Nj denotes the joint number, giving:

xi = {ra, rx, rz, ry, jp, jv, jr, cf}.

C. Tokenizer Results
We show the numerical results of different tokenizers here. The superior performance of FSQ in terms of reconstruction
accuracy, codebook utilization, and code distribution uniformity positions it as a more robust and scalable alternative than
VQ. This advantage is particularly beneficial in scenarios that require high-capacity encoding, such as large-scale motion
data, where effective codebook utilization and precise reconstruction are paramount.

VQ L1 loss FID MPJPE Activate Entropy

256 0.071 0.12 0.05 1.00 170.58
512 0.065 0.10 0.05 1.0 364.45
1024 0.062 0.09 0.05 0.99 704.70
2048 0.060 0.08 0.05 0.97 1145.77
4096 0.078 0.78 0.09 0.69 147.96
8192 0.083 21.8 0.17 0.81 82.20
32768 0.076 5.05 0.11 0.63 1029.20

(a) VQ results on HumanML3D.

VQ L1 loss MPJPE Activate Entropy

256 0.050 49.70 1.00 177.65
512 0.047 47.90 1.00 404.09
1024 0.045 45.90 0.998 752.028
2048 0.044 60.10 0.996 1202.23
4096 0.044 42.40 0.994 3373.35
8192 0.045 43.53 0.998 6714.25
16384 0.077 62.15 0.993 12732.29
32768 0.054 48.50 0.962 22286.32

(b) VQ results on MotionUnion.

FSQ L1 loss FID MPJPE Activate Entropy

256 0.081 0.159 0.057 1.00 213.20
512 0.075 0.129 0.053 1.00 446.10
1024 0.0713 0.106 0.052 1.00 723.80
4096 0.064 0.088 0.049 0.998 2759.52
16384 0.053 0.052 0.044 0.976 10119.25
65536 0.051 0.049 0.042 0.764 33818.21

(c) FSQ results on HumanML3D.

FSQ L1 loss MPJPE Activate Entropy

256 0.049 47.30 1.00 220.26
512 0.046 44.66 1.00 441.05
1024 0.045 43.40 1.00 853.64
2048 0.042 41.57 1.00 1572.82
4096 0.041 40.66 1.00 3561.95
16384 0.037 37.94 0.999 10974.16
65536 0.034 36.60 0.999 40818.21

(d) FSQ results on MotionUnion.

Table 3. Tokenizer numerical results. The Entropy is Exponential Entropy.

D. More Results on HumnaML3D Benchmark
We train all models on our proprietary dataset, MotionUnion, and evaluate their performance on the HumanML3D bench-
mark. The numerical results are presented in Tab. 4. Notably, we observe that the model configured with the largest codebook
size and model capacity achieves the best overall performance, consistent with the lowest normalized test loss. However,
when examining cases of overfitting—such as the combination of a small codebook size (e.g., 256) and a large model size
(44M parameters)—the automatic metrics continue to improve, despite being inconsistent with the normalized loss. A sim-
ilar phenomenon is observed when training T2M-GPT [8]. We hypothesize that this discrepancy arises from the suboptimal
performance of the pretrained feature extractor. Additionally, our findings suggest that larger codebook sizes necessitate
proportionally larger model capacities to fully leverage their potential.

Furthermore, we conduct a comparative analysis against other frameworks that directly fine-tune large language models
(LLMs), such as those proposed in [2, 6, 7, 9]. Our approach demonstrates competitive results on semantic alignment
metrics, including R@1, R@3, and Matching Score. Notably, our model achieves superior performance in terms of the
FID, highlighting the advantages of our motion tokenizer and architectural design. These results indicate that training a
native motion generation model from scratch offers substantial benefits compared to fine-tuning an LLM. Specifically, this
approach not only improves performance but also achieves significant parameter efficiency.

Model Model Size FID↓ R@1↑ R@2↑ R@3↑ Matching Score↓ Diversity

MotionGPT [2]* Llama-1-13B 0.592 0.363 - 0.633 4.029 -
MotionGPT [2]* Llama-2-13B 0.571 0.367 - 0.654 3.981 -
MotionLLM [7] Gemma-2b 0.491 0.482 - 0.770 3.138 -
AvatarGPT [1] Llama-1-13B 0.567 0.389 - 0.623 - -
LargeMotionModel [6] Llama-2-13B 0.166 0.519 - 0.803 2.964 -

Codebook size Model Size FID↓ R@1↑ R@2↑ R@3↑ Matching Score↓ Diversity

256 44M 3.184 0.302 0.45 0.547 4.557 8.317
256 111M 1.197 0.398 0.565 0.667 3.726 8.968
256 343M 0.730 0.432 0.618 0.719 3.466 8.972
256 775M 0.704 0.434 0.617 0.722 3.428 9.393
256 1B 0.709 0.441 0.626 0.723 3.424 9.123
256 3B 0.670 0.443 0.627 0.726 3.410 8.738

512 44M 3.971 0.271 0.402 0.498 4.981 8.792
512 111M 1.338 0.373 0.550 0.660 3.741 8.567
512 343M 0.851 0.415 0.590 0.695 3.514 9.226
512 775M 0.664 0.441 0.619 0.727 3.361 9.187
512 1B 0.624 0.447 0.631 0.734 3.330 8.948
512 3B 0.617 0.443 0.627 0.734 3.340 9.217

1024 44M 8.111 0.216 0.332 0.415 5.766 7.614
1024 111M 1.331 0.371 0.535 0.647 3.865 9.118
1024 343M 0.815 0.422 0.601 0.705 3.525 9.404
1024 775M 0.583 0.447 0.635 0.735 3.300 9.489
1024 1B 0.488 0.453 0.650 0.745 3.290 9.136
1024 3B 0.496 0.453 0.643 0.741 3.296 9.376

2048 44M 13.964 0.192 0.298 0.372 6.295 6.548
2048 111M 1.553 0.361 0.528 0.640 3.857 9.11
2048 343M 0.794 0.418 0.604 0.707 3.490 9.136
2048 775M 0.465 0.450 0.636 0.736 3.300 9.241
2048 1B 0.320 0.454 0.640 0.740 3.264 9.836
2048 3B 0.346 0.465 0.656 0.752 3.216 9.277

4096 44M 18.311 0.131 0.217 0.276 7.077 6.043
4096 111M 1.465 0.327 0.492 0.599 4.134 8.542
4096 343M 0.568 0.422 0.587 0.689 3.467 9.174
4096 775M 0.240 0.464 0.650 0.750 3.250 9.393
4096 1B 0.208 0.486 0.672 0.771 3.120 9.564
4096 3B 0.214 0.483 0.674 0.764 3.128 9.455

16384 44M 44.240 0.056 0.103 0.153 8.019 2.842
16384 111M 4.714 0.254 0.395 0.496 4.891 8.030
16384 343M 1.217 0.380 0.556 0.661 3.711 8.838
16384 775M 0.501 0.443 0.625 0.723 3.370 9.342
16384 1B 0.347 0.477 0.657 0.758 3.206 9.727
16384 3B 0.331 0.469 0.670 0.761 3.192 9.310

65536 44M 50.796 0.041 0.0791 0.1185 8.203 1.490
65536 111M 2.178 0.311 0.461 0.566 4.286 5.311
65536 343M 0.104 0.510 0.692 0.781 3.021 9.540
65536 775M 0.150 0.495 0.685 0.785 3.080 9.558
65536 1B 0.131 0.503 0.687 0.779 3.070 9.580
65536 3B 0.101 0.512 0.695 0.796 2.990 9.590

Table 4. Test results of different models on HumanML3D Benchmark. We take the results of MotionGPT* from Wang et al. [6].

E. Dataset Visualization
We show motion visualizations and text annotations of MotionUnion in Fig. 1. Render videos can be found in the supplemen-
tary materials. The specific frames and sequences are shown in the Tab. 5. PhysHumanML3D subset is the physics-optimized
version of HumanML3D using HPC [3].

Frames Seqs

PhysHumanML3D 5770156 22628
Animation 55282 559
Combatmotion 3368986 26097
EgoBody 437976 980
Fitness 106537 262
Game Motion 797824 3296
Haa500 438733 6944
HumanML3D 4117392 29228
Humman 187580 971
Idea400 2108727 12042
Kungfu 311507 1032
Music 914642 3394
Perform 327903 923
100 Style 4018110 16074
Internal Data 3905243 23067

Table 5. The detailed quantities of frames and sequences within the MotionUnion dataset.

The person is simulating kite flying indoors.
They use their arms to mimic holding and

controlling a kite string, periodically adjusting
their grip and pulling on the imaginary string,

while shifting their weight and standing in place
to maintain balance.

The person is standing and saluting. The
motion involves raising their right arm to the

forehead in a salute gesture and then lowering
it back to the starting position by the side of the

body.

Figure 1. MotionUnion visualization

F. FSQ settings

We follow Mentzer et al. [4] to set the L in Tab. 6. The codebook size can be calculated as |C| =
∏d

i=1 Li. For example,
210 ≈ 8 ∗ 5 ∗ 5 ∗ 5 = 1000.

Target size |C| 24 26 28 29 210 211 212 214 216

Quantized integer layers L [5, 3] [8, 8] [8, 6, 5] [8, 8, 8] [8, 5, 5, 5] [8, 8, 6, 5] [7, 5, 5, 5, 5] [8, 8, 8, 6, 5] [8, 8, 8, 5, 5, 5]

Table 6. The choices of L in FSQ.

G. More Generation Visualizations

We show some of the generation results in Fig. 2. The visualization shows our model could handle various types of texts.
More generation visualizations and comparisons between different model sizes and codebook sizes can be found in the
supplementary materials.

The person takes 4 steps forward,
then shakes the legs.

The character dashes forward, then
leans to the left side and gathers

strength, before explosively
smashing the right and left sides

forward. Finally, they stand upright.

The character bends down and
goes through the obstacle, making
a direct, light, and agile movement,

flowing smoothly.

The person steps forward
and kicks.

The person walks like the mummy.

A person is acting like a human
elephant.

A person is perparing to battle.

A man Get Hit ,root motion get
Forward,Heavy Stagger and Slow

Recovery.

Side kick.

Figure 2. Human motion generation results on test set of ScaMo.

H. Limitations
The main limitation of this paper is the limited data. Unfortunately, we still have not observed the emerging abilities, based
on these limited data. We are still working on collecting larger text-motion datasets and leaving it as our future work.
Additionally, some of the data were sourced from video motion capture, which has posed quality constraints that, in turn,
impact the generation quality.

References
[1] Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang Cai,

Lei Yang, and Ziwei Liu. Avatarclip: Zero-shot text-driven
generation and animation of 3d avatars. ACM SIGGRAPH,
2022. 4

[2] Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and
Tao Chen. Motiongpt: Human motion as a foreign language.
NeurIPS, 2024. 3, 4

[3] Zhengyi Luo, Jinkun Cao, Kris Kitani, Weipeng Xu, et al.
Perpetual humanoid control for real-time simulated avatars.
In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10895–10904, 2023. 5

[4] Fabian Mentzer, David Minnen, Eirikur Agustsson, and
Michael Tschannen. Finite scalar quantization: Vq-vae made
simple. arXiv preprint arXiv:2309.15505, 2023. 5

[5] OpenAI GPT-4 Team. Gpt-4 technical report. 2023. 2
[6] Ye Wang, Sipeng Zheng, Bin Cao, Qianshan Wei, Qin Jin,

and Zongqing Lu. Quo vadis, motion generation? from
large language models to large motion models. arXiv preprint
arXiv:2410.03311, 2024. 3, 4

[7] Qi Wu, Yubo Zhao, Yifan Wang, Yu-Wing Tai, and Chi-Keung
Tang. Motionllm: Multimodal motion-language learning with
large language models. arXiv preprint arXiv:2405.17013,
2024. 3, 4

[8] Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Yong
Zhang, Hongwei Zhao, Hongtao Lu, Xi Shen, and Ying Shan.
Generating human motion from textual descriptions with dis-
crete representations. In CVPR, pages 14730–14740, 2023. 2,
3

[9] Zixiang Zhou, Yu Wan, and Baoyuan Wang. Avatargpt: All-
in-one framework for motion understanding planning gener-
ation and beyond. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1357–1366, 2024. 3

	Flops calculation
	Implmentation Details
	Tokenizer Results
	More Results on HumnaML3D Benchmark
	Dataset Visualization
	FSQ settings
	More Generation Visualizations
	Limitations

