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A. Flops calculation

In this paper, we follow the criteria proposed by OpenAl [5] to calculate the floating point operations (FLOPs). The detailed
breakdown of these computations is provided in Tab. 1. Additionally, to facilitate reproducibility, we present the complete

code for this calculation process in Code 1.

By utilizing the provided code, we can quickly compute the FLOPs for their specific model configurations, facilitating

performance analysis and design optimization.

Operation ‘ Parameters

FLOPs per Token

Embed (nvocab + nctx)dmodel
Attention: Q, K, V Njayer X Amodel X 3datn
Attention: Mask -

Attention: Projection Nlayer X atin X Amodel
Feedforward Niayer X 2dmodel X dit
De-embed -

Total (Non-Embedding)

N = 2dmodel X nlayer<2dattn + dff)

4dmodel
2nlayer X Amodel X 3ain
inayer X Netx X dagin
2nlayer X daltn X dmndel
inayer X 2dff
2dmodel X Myocab
Crorward = 2N + 2nlayer X Netx X dayn

Table 1. Details of FLOPs calculation criteria by OpenAl [5].

def openai_flops_per_token(n_layers, n_heads,

"""Open AI method for forward pass FLOPs counting of
mmwn

d_attn = d_model // n_heads

d_ff = d_model x ff_ ratio

embeddings =
attn_qgkv = 2
attn_mask = 2 % n_layers % n_ctx *
attn_project = 2 % n_layers x
ff = 2 x n_layers x 2 % d_model x d_ff
logits = 2 % d_model % n_vocab

4 x d_model
* n_layers x d_model x 3 «*

d_model,

(d_attn * n_heads)

ff_ratio=4):

Transformer

n_ctx, n_vocab,

decoder-only

(d_attn % n_heads)
(d_attn * n_heads)

* d_model

return embeddings + attn_gkv + attn_mask + attn_project + ff + logits

Code 1. Open Al method for forward pass FLOPs counting of decoder-only Transformer.

B. Implmentation Details

The framework is implemented using PyTorch. For the Motion FSQ-VAE, both the encoders and decoders are designed as
convolutional residual blocks, utilizing a downsampling factor of 4. The transformer architecture closely aligns with that
of LLaMA. Specifically, each block incorporates RMSNorm prior to both the prefix attention layer and the feed-forward
network (FFN) layer. We train the transformers using bf16 to reduce the memory. We do not use the masking strategy in [8].

The optimization details are shown in Tab. 2.

Config Tokenizer Transformer
optimizer AdamW AdamW
optimizer momentum 0.9 0.9

weight decay 0.0 le-06

learning rate schedule | MultiStepLR | Warmup and Cosine decay
milestone_ratio 0.6 -

warmup ratio 0.003 0.1

Table 2. The optimizer details.




For motion representation, we follow HumanML3D [8]. HumanML3D Format proposes a motion representation "

inspired by motion features in character control. This redundant representation is quite suited to neural models, particularly
variational autoencoders. Specifically, the i-th pose z? is defined by a tuple of root angular velocity r® € R along Y-axis, root
linear velocities (7%, 7% € R) on XZ-plane, root height 7¥ € R, local joints positions 57 € R3Ns, velocities 7 € R3Ni and
rotations j” € RNi in root space, and binary foot-ground contact features ¢/ € R* by thresholding the heel and toe joint
velocities, where IN; denotes the joint number, giving:

ot = {r et Y, P, 5 5 )
C. Tokenizer Results

We show the numerical results of different tokenizers here. The superior performance of FSQ in terms of reconstruction
accuracy, codebook utilization, and code distribution uniformity positions it as a more robust and scalable alternative than
VQ. This advantage is particularly beneficial in scenarios that require high-capacity encoding, such as large-scale motion
data, where effective codebook utilization and precise reconstruction are paramount.

VQ | Llloss | FID | MPJPE | Activate | Entropy VQ | Llloss | MPJPE | Activate | Entropy
256 | 0071 | 0.12| 005 1.00 | 170.58 236 0.050 | 49.70 1.00 177.65
512 0.065 | 0.10 | 0.05 1.0 | 36445 >12 0.047 47.90 1.00 404.09

1024 0.045 45.90 0.998 752.028
1024 | 0.062 | 0.09 | 0.05 0.99 704.70

2048 0.044 60.10 0.996 1202.23
2048 | 0.060 | 0.08 | 0.05 0.97 1145.77 4096 0.044 4240 0.994 337335
4096 | 0.078 | 0.78 | 0.09 0.69 147.96 3192 0.045 4353 0998 6714.25
8192 0.083 | 21.8 | 0.17 0.81 82.20 16384 0.077 62.15 0.993 12732.29
32768 | 0.076 | 5.05 | 0.11 0.63 1029.20 32768 0.054 48.50 0.962 22286.32

(a) VQ results on HumanML3D. (b) VQ results on MotionUnion.

FSQ | Llloss | FID | MPJPE | Activate | Entropy FSQ | Llloss | MPIPE | Acdvatc | Enopy

256 0.049 47.30 1.00 220.26
256 0.081 | 0.159 | 0.057 1.00 213.20 512 0.046 44.66 1.00 441.05
512 0.075 | 0.129 | 0.053 1.00 446.10 1024 0.045 43.40 1.00 853.64
1024 | 0.0713 | 0.106 | 0.052 1.00 723.80 2048 0.042 4157 1.00 1572.82
4096 0.064 | 0.088 | 0.049 0.998 2759.52 4096 0.041 40.66 1.00 3561.95
16384 | 0.053 | 0.052 | 0.044 | 0976 | 10119.25 16384 0.037 37.94 0.999 10974.16
65536 | 0.051 | 0.049 | 0.042 | 0.764 | 33818.21 65536 0.034 36.60 0.999 40818.21

(c) FSQ results on HumanML3D. (d) FSQ results on MotionUnion.

Table 3. Tokenizer numerical results. The Entropy is Exponential Entropy.

D. More Results on HumnaML3D Benchmark

We train all models on our proprietary dataset, MotionUnion, and evaluate their performance on the HumanML3D bench-
mark. The numerical results are presented in Tab. 4. Notably, we observe that the model configured with the largest codebook
size and model capacity achieves the best overall performance, consistent with the lowest normalized test loss. However,
when examining cases of overfitting—such as the combination of a small codebook size (e.g., 256) and a large model size
(44M parameters)—the automatic metrics continue to improve, despite being inconsistent with the normalized loss. A sim-
ilar phenomenon is observed when training T2M-GPT [8]. We hypothesize that this discrepancy arises from the suboptimal
performance of the pretrained feature extractor. Additionally, our findings suggest that larger codebook sizes necessitate
proportionally larger model capacities to fully leverage their potential.

Furthermore, we conduct a comparative analysis against other frameworks that directly fine-tune large language models
(LLMs), such as those proposed in [2, 6, 7, 9]. Our approach demonstrates competitive results on semantic alignment
metrics, including R@1, R@3, and Matching Score. Notably, our model achieves superior performance in terms of the
FID, highlighting the advantages of our motion tokenizer and architectural design. These results indicate that training a
native motion generation model from scratch offers substantial benefits compared to fine-tuning an LLM. Specifically, this
approach not only improves performance but also achieves significant parameter efficiency.



Model Model Size ‘ FID| R@11 R@21 R@3f Matching Score] Diversity

MotionGPT [2]* Llama-1-13B | 0.592  0.363 - 0.633 4.029 -
MotionGPT [2]* Llama-2-13B | 0.571  0.367 - 0.654 3.981 -
MotionLLM [7] Gemma-2b 0.491  0.482 - 0.770 3.138 -
AvatarGPT [1] Llama-1-13B | 0.567  0.389 - 0.623 - -
LargeMotionModel [6] Llama-2-13B | 0.166  0.519 - 0.803 2.964 -
Codebook size Model Size ‘ FID{ R@l1T R@2T R@31 Matching Score] Diversity
256 44M 3.184  0.302 0.45 0.547 4.557 8.317
256 111M 1.197  0.398 0.565  0.667 3.726 8.968
256 343M 0.730 0432 0.618 0.719 3.466 8.972
256 775M 0.704 0434 0.617 0.722 3.428 9.393
256 1B 0.709 0441 0.626  0.723 3.424 9.123
256 3B 0.670 0.443  0.627 0.726 3.410 8.738
512 44M 3971 0271 0402  0.498 4.981 8.792
512 111M 1.338 0373 0.550  0.660 3.741 8.567
512 343M 0.851 0415 0.590  0.695 3.514 9.226
512 775M 0.664 0441 0.619 0.727 3.361 9.187
512 1B 0.624 0447 0.631 0.734 3.330 8.948
512 3B 0.617 0443 0.627 0.734 3.340 9.217
1024 44M 8.111 0216 0332 0415 5.766 7.614
1024 111M 1.331  0.371 0.535  0.647 3.865 9.118
1024 343M 0.815 0422 0.601 0.705 3.525 9.404
1024 775M 0.583 0447 0.635 0.735 3.300 9.489
1024 1B 0.488 0453  0.650 0.745 3.290 9.136
1024 3B 0496 0453 0.643 0.741 3.296 9.376
2048 44M 13.964 0.192 0.298 0.372 6.295 6.548
2048 111M 1.553 0361 0.528 0.640 3.857 9.11
2048 343M 0.794 0418 0.604  0.707 3.490 9.136
2048 775M 0465 0450 0.636  0.736 3.300 9.241
2048 1B 0.320 0454 0.640 0.740 3.264 9.836
2048 3B 0.346 0465 0.656  0.752 3.216 9.277
4096 44M 18.311 0.131 0.217  0.276 7.077 6.043
4096 111M 1465 0327 0492  0.599 4.134 8.542
4096 343M 0.568 0422 0.587  0.689 3.467 9.174
4096 775M 0.240 0464 0.650 0.750 3.250 9.393
4096 1B 0.208 0486 0.672 0.771 3.120 9.564
4096 3B 0.214 0483 0.674 0.764 3.128 9.455
16384 44M 44240 0.056 0.103  0.153 8.019 2.842
16384 111M 4714 0254 0395 0496 4.891 8.030
16384 343M 1.217 0380 0.556  0.661 3.711 8.838
16384 775M 0.501 0443 0.625 0.723 3.370 9.342
16384 1B 0.347 0477 0.657 0.758 3.206 9.727
16384 3B 0.331 0469 0.670  0.761 3.192 9.310
65536 44M 50.796  0.041 0.0791 0.1185 8.203 1.490
65536 111M 2.178 0311 0461  0.566 4.286 5.311
65536 343M 0.104 0.510 0.692 0.781 3.021 9.540
65536 775M 0.150 0495 0.685 0.785 3.080 9.558
65536 1B 0.131  0.503  0.687  0.779 3.070 9.580
65536 3B 0.101  0.512  0.695 0.796 2.990 9.590

Table 4. Test results of different models on HumanML3D Benchmark. We take the results of MotionGPT* from Wang et al. [6].



E. Dataset Visualization

We show motion visualizations and text annotations of MotionUnion in Fig. 1. Render videos can be found in the supplemen-
tary materials. The specific frames and sequences are shown in the Tab. 5. PhysHumanML3D subset is the physics-optimized
version of HumanML3D using HPC [3].

Frames Seqs

PhysHumanML3D | 5770156 22628
Animation 55282 559
Combatmotion 3368986 26097
EgoBody 437976 980
Fitness 106537 262
Game Motion 797824 3296
Haa500 438733 6944
HumanML3D 4117392 29228
Humman 187580 971
Idea400 2108727 12042
Kungfu 311507 1032
Music 914642 3394
Perform 327903 923
100 Style 4018110 16074
Internal Data 3905243 23067

Table 5. The detailed quantities of frames and sequences within the MotionUnion dataset.

The person is simulating kite flying indoors.
They use their arms to mimic holding and
controlling a kite string, periodically adjusting
their grip and pulling on the imaginary string,
while shifting their weight and standing in place
to maintain balance.

The person is standing and saluting. The
motion involves raising their right arm to the
forehead in a salute gesture and then lowering
it back to the starting position by the side of the
body.

Figure 1. MotionUnion visualization

F. FSQ settings

We follow Mentzer er al. [4] to set the L in Tab. 6. The codebook size can be calculated as |C| = H?Il L;. For example,
210 ~ 8 % 5% 5% 5 = 1000.

Target size |C| 24 26 28 29 210 VAR 212 214 216
Quantized integer layers L [5,3] [8,8] [8,6,5] [8,8,8] [8,5,5,5] [8,8,6,5] [7,5,5,5,5] [8,8,8,6,5] [8,8,8,5,5,5]
Table 6. The choices of L in FSQ.




G. More Generation Visualizations

We show some of the generation results in Fig. 2. The visualization shows our model could handle various types of texts.
More generation visualizations and comparisons between different model sizes and codebook sizes can be found in the
supplementary materials.

The person walks like the mummy. A person is perparing to battle. Side kick.

The person steps forward The person takes 4 steps forward, A person is acting like a human
and kicks. then shakes the legs. elephant.

A man Get Hit ,root motion get The character dashes forward, then The character bends down and
Forward,Heavy Stagger and Slow leans to the left side and gathers goes through the obstacle, making
Recovery. strength, before explosively a direct, light, and agile movement,
smashing the right and left sides flowing smoothly.

forward. Finally, they stand upright.

Figure 2. Human motion generation results on test set of ScaMo.



H. Limitations

The main limitation of this paper is the limited data. Unfortunately, we still have not observed the emerging abilities, based
on these limited data. We are still working on collecting larger text-motion datasets and leaving it as our future work.
Additionally, some of the data were sourced from video motion capture, which has posed quality constraints that, in turn,
impact the generation quality.
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