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Supplementary Material

A. BEV Feature with Gaussian Splatting

A.1. Projection

As described in Gaussian Splatting [4], to render 3D Gaus-
sians in image space, we project their covariance matrix X
using a viewing transformation W and the Jacobian J of the
affine approximation of the projective transformation:

Y =JgweswljT,

where Y’ is the projected covariance matrix. Projecting to

the Bird’s Eye View (BEV) image space simplifies the pro-

cess significantly because the z-axis can be ignored. The

BEV scaling matrix, Sggy, scales the 3D coordinates to the
2D BEV plane and is defined as:
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Note that the = and y axes of the 3D coordinates are
swapped when mapping to the BEV plane. The projection
of the covariance matrix 3 into the BEV image space using
the scaling matrix Sggy is then given by:

Y = SprvYeySapy,

where Y, is the 2 x 2 submatrix of X corresponding to the
x and y axes. Therefore, the projected covariance matrix Y’
becomes:
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A.2. Gradient Computation

Next, we compute the derivative of the loss L with respect to
the covariance matrix >, denoted as g—é. Let ¥/ be defined

as:
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where:

a= Yoy - scalei,
b = Xy - scale; - scale,,

c= X1 - scalei.

Using the chain rule, the gradient aaTL,;j is given by:
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We compute the partial derivatives:
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- For X1 (since X is symmetric, X192 = Yo1):
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B. Ablation Study on Depth Prediction

We conduct an ablation study to evaluate the impact of var-
ious depth settings, including depth ranges and bin sizes,
on model performance, as shown in Table 1. The result
demonstrates that the model’s performance is relatively sta-
ble across different depth range and bin size configurations,
with the setting (1, 61) and bin size 64 providing a slightly
higher IoU. This robustness simplifies parameter selection
in practice.



Table 1. Ablation study on depth settings. The first depth range,
(1,61), where the minimum depth is set to 1 meter and the maxi-
mum depth is set to 61 meters, corresponds to settings used in the
paper. The second depth range, (0.5, 71), represents an extended
range capturing the minimum and maximum depth values in the
BEV plane. Bin sizes (32, 64,128) are also evaluated for their
impact on IoU for the vehicle class.

Depth range Binsize B IoU Vehicle
(1,61) 32 37.7
(1,61) 64 38.0
(1,61) 128 37.8
(0.5,71) 32 37.7
(0.5,71) 64 37.9
(0.5,71) 128 37.6

Table 2. Ablation study on multi-scale BEV features. We vary
the number of multi-scale stages and evaluate the effect on IoU
(vehicle class), FPS, and memory usage (in GiB). Each stage cor-
responds to a specific BEV resolution: 50 x 50, 100 x 100, and
200 x 200.

50 x 50 100 x 100 200 x 200 FPS Mem (GiB) IoU Vehicle

v 85.0 0.374 36.6
v v 77.0 0.363 37.4
v v v 67.9 0.360 38.0

C. Multi-scale BEV Features

The multi-scale BEV feature extraction layer enhances the
representation of BEV features by progressively increasing
resolution across stages. The process starts with a learn-
able BEV embedding initialized at the lowest resolution. At
each stage, the rendered BEV features are fused with the
BEV embedding and upsampled by a factor of 2. This hier-
archical approach allows the model to capture finer spatial
details while balancing computational efficiency. An abla-
tion study was conducted to evaluate the effect of using one,
two, or three multi-scale stages, as shown in Table 2. The
results demonstrate that increasing the number of stages im-
proves performance, with the highest IoU of 38.0 achieved
using three stages. However, this comes at the cost of re-
duced FPS, which drops from 85.0 for one stage to 67.9 for
three stages. Memory usage slightly decreases with more
stages, from 0.374 GiB to 0.360 GiB, due to the hierarchi-
cal refinement reducing reliance on larger resolution BEV
embeddings.

These results suggest that three stages offer the best ac-
curacy while balancing memory and speed. However, con-
figurations with fewer stages can be selected for applica-
tions prioritizing higher FPS.

D. More Results on Map Segmentation and 3D
Object Detection

Beyond instance-level BEV segmentation, we further eval-
uate our method on map segmentation and 3D object de-
tection to assess its generalization capability. For map seg-
mentation, we predict drivable areas, pedestrian crossings,
walkways, and road dividers, following the same experi-
mental setup as prior works. As shown in Table 3, our
method achieves competitive performance.

For 3D object detection, we integrate a detection head
directly into the BEV features, following the approach of
BEVFormer. We evaluate performance using mean Aver-
age Precision (mAP) and nuScenes Detection Score (NDS).
As shown in Table 4, our method extends beyond BEV seg-
mentation and is also applicable to detection tasks. These
results further demonstrate the versatility of our approach
across different autonomous driving tasks.

Table 3. Map Segmentation Comparisons. We evaluate our
method for common map classes on nuScenes.

Method Drivable Ped. Cross. Walkway Divider

LSS[6] 754 38.8 46.3 36.5
CVT[7] 743 36.8 39.9 29.4
Ours 76.3 46.3 50.2 38.7

Table 4. 3D Detection Performance on nuScenes Validation.

Method NDS mAP
BEVDet [3] 350 283
BEVFormer [5] 354 25.2
Ours 340 26.6

Table 5. Comparison of Submodule Execution Time. All times
are measured in milliseconds. The “VT” column represents the
view-transformation module (BEV encoder). All measurements
are conducted on an RTX 4090 GPU.

Method Backbone Neck VT Head Total
PointBEV [1] 5.6 021 1347 195 21.23
FIERY static [2] 5.71 — 3646 1.18 4335
CVT[7] 5.68 — 217 071 8.02
Ours 5.92 0.51 146 1.13 9.02

E. Submodule Speed Analysis

To further evaluate the efficiency of our approach, we ana-
lyze the runtime performance of key submodules and com-
pare them with baseline methods. We break down the in-
ference time into different processing stages, including the
backbone, neck, view transformation, and head. Table 5



reports the speed of each submodule. Our method demon-
strates a significant speed advantage in the view transfor-
mation stage while maintaining comparable efficiency to
projection-based methods.
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