UrbanCAD: Towards Highly Controllable and Photorealistic
3D Vehicles for Urban Scene Simulation

Supplementary Material

This appendix details our method, implementation, ex-
perimental designs, additional experiment results, utilized
resources, and broader implications. We first detail how
to retrieve and optimize the CAD models in Section 8.1,
Section 8.2, Section 8.3, Section 8.4, and Section 8.4, and
then we show the process of urban lighting estimation in
Section 8.6 and background reconstruction in Section 8.7.
In Section 9, we provide details on experiment designs in-
cluding baselines implementation (Section 9.1), synthetic
data generation (Section 9.2), and perception systems im-
plementation (Section 9.3). We also show more results and
implementation details of our functionality in (Section 10).
Finally, we report additional experiments and analysis in
(Section 11).

8. UrbanCAD Implementation Details
8.1. CAD Model Filtering

Our method requires the CAD models to have correct mate-
rial index assignment to support automatic coloring. How-
ever, we observe that in free CAD model libraries, there are
small parts of handcrafted CAD models without proper ma-
terial index designs. To this end, we design a script to filter
the unqualified CAD models automatically or with a small
amount of user interface based on the material design.

8.2. Pose Matching

Following [11, 14], we choose the CAD model rendering
poses based on the DINO [4] feature similarity with the ref-
erence image. First, we crop the vehicles from both the ref-
erence image I,.; and 360° retrieved CAD model render-

ings {I’C“ad};:[:l, where M = 360/A is the number of ren-
dering views, and resize them to the same resolution. Then,
we compute the DINO feature maps [4] for both vehicle
image in reference view and CAD models rendering results
using the DINO-ViT encoder Epino: Frep = Epmvo (Lreys)s

{F¥ ., iw:l = Epmo ({15, d}i\il). Finally, we compute the

L2 distances between the F,..; and the {F’fad}iw:l and se-
lect the rendering that has the minimum L2 distance with
the vehicle in the reference view. In our experiment, we find
this approach can achieve accurate pose-matching results
regardless of appearance and geometry differences between
the retrieved CAD models and reference vehicles. The qual-
ity results of our pose-matching method are shown in Fig. 8.

8.3. Part-level Material Prior Retrieval

Since the retrieved CAD models usually have an unsatisfac-
tory appearance, simply using Grounded SAM to segment
the CAD model renderings will lead to many failure cases.
ControlNet can translate primitives like edges into realistic
pictures. Therefore, we propose to use ControlNet to aug-
ment the CAD model renderings and ensure the accurate
segmentation of Grounded SAM. Specifically, we first ex-
tract edges from the material index maps rendered in 360°.
Then, we input edges into a canny-based pre-trained Con-
trolNet model and obtain the augmented multi-view images.
Note that this canny-based ControlNet translation does not
affect the position of the components. After that, we use
Grounded SAM to segment the 360° augmented images
with component text prompts like windows and wheels.
Once we get the multi-view segmentation results, we first
select the rendering with the highest mean mask confidence.
Then, we calculate the material index masks that have an
intersection with the segmented mask. We define them as
active materials Mat,.;. We calculate the masks of each
active material Mat,.; in material index map M,,,4 and
in the Grounded SAM segmentation map M,.,. We then
compute the IOU between M, and M . If the IOU is
larger than the IOU threshold (we set the IOU threshold as
0.5), the material will be classified into the corresponding
component. We illustrate our method in Fig. 10.

8.4. Material Design Merging Using DINO Feature

Since the bodies of some vehicles are composed of many
small components in the CAD models, only retrieving and
optimizing materials for the largest part will lead to unsatis-
factory results. However, Grounded SAM sometimes can’t
recognize tiny components like vehicle lights. Simply re-
garding all remaining parts after component recognition as
car bodies will also lead to inaccurate material assignment.
To this end, we utilize the DINO corresponding points pro-
posed in [4] to merge the small components in the CAD
models. Specifically, we first segment the known compo-
nents in the input image using Grounded SAM. Then, we
calculate the corresponding points between the remaining
parts in the input images and the CAD model renderings.
Since the remaining parts in the input images are the car
body, the corresponding parts in the CAD model renderings
are the car body as well. Besides, with a suitable setting
of corresponding points’ numbers, tiny components not be-
longing to car bodies will not be wrongly merged. During
our experiment, this kind of merging produces good mate-
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Figure 7. More qualitative results on KITTI-360 for novel view synthesis from reference (Ref.) and rotated (rot.) viewpoints.

P £ L5 &

Figure 8. Pose matching results. It shows that the pose of retrieved
CAD models (second row) can match accurately with the pose of
the input vehicle images (first row) despite the large difference
between appearance and geometry.

o o

Figure 9. Symmetric material design. Different colors represent
different material indexes.

rial assignment results on tiny components of CAD models.

8.5. Material Optimization

Since there is no exact correspondence between rendered
and reference pixels, we use a part-level loss £;,¢ by mini-
mizing the difference between the mean and variance of the
corresponding parts following [71]:

emean - |N(Iref * Sref [C]) - M(Trender . Scad [CD| (4)
gvar = |U2(Iref ‘ Sref[c]) - 02(/frender . cad[ ])| (5)
gstat = émean + evar (6)

where /I\render is the CAD model rendering after pose
matching, S,.f[c] and S..q[c] are the segmentation masks

of the component c in the reference view and CAD model
rendering.

To match the patterns of the reference view, we use a
masked VGG loss ¢y g using Gram matrices [20] to en-
hance visual similarity:

Evgg = |Gram(Iref7 Sref [C]) Gram(:[rendera Scad[c])|
@)

To further match the color of the reference vehicles, we
add a masked RGB loss /.., on the overlap region between
components in the reference view and CAD model render-

ing:

- Icad : Soverlap| (8)

The total loss function is shown as below:

Ergb = |I7‘ef . Soverlap

étotal = )\statzstat + /\vgggvgg + /\rgbgrgb (9)

In our experiment, we set the Ag¢qs t0 0.1, the Aygq to 1,
the A\,45 to 1. Note that spatially varying roughness param-
eters are difficult to optimize from single-view images due
to limited highlight observations. Handcrafted procedural
material graphs provide photorealistic spatially varying ef-
fects, so the roughness parameters of the retrieved material
prior are fixed during optimization, as in [71]. Besides, we
observe two types of materials with distinct spatially vary-
ing effects in car bodies depending on whether the vehicles
are painted or not, as shown in Fig. 13. To best fit the ob-
servation, we recommend selecting the corresponding car
body material prior via the user interface.

8.6. Spatially Varying Lighting Estimation Based
on Fisheye Images

As shown in Fig. 14, to obtain spatially varying lighting, we
first stitch 2 fisheye images into an LDR panorama. Then
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Figure 10. Illustration of Semantic-based Part-aware Material Prior Retrieval Module. To accurately recognize the semantic meaning of
the retrieved CAD model for material prior retrieval, we first render the multi-view material designs and convert them to the canny maps.
Subsequently, we use the canny-based ControlNet [78] to produce multi-view augmented images. Note that the components’ locations in
augmented images are aligned with the corresponding material design renderings. After that, we use Grounded SAM [52] and components’
names (e.g. windows) to segment the components in the augmented images and obtain multi-view segmented masks with corresponding
components’ meanings. Finally, we utilize these segmented masks to recognize the material indexes of corresponding components in the
material designs.

Figure 11. Disentangled geometry of handcrafted CAD model.
Different colors represent different disentangled geometry.

we crop the upper part of the panorama representing the
skydome and feed it into the ChatSim [64] LDR to HDR
prediction network. After obtaining the HDR panorama of
the sky part, we use FastSAM [81] with text prompts to ob- >y ;
tain the ground part. FastSAM selectively ignores detailed Q 0 L B “‘T o, (\ — ’
pixels, enabling us to separate the clean sky, which could be '
beneficial to subsequent usage. After performing numerical
correction on the LDR image and concatenating it with the
previously obtained HDR panorama, we can obtain the lo-
cal lighting of the current position where the fisheye image
is captured.

Figure 12. Quality results of part-recognition based on randomly
colored material design (top) and retrieved CAD renderings with-

We employ the HUGS [82] to reconstruct the background of out ControlNet augmentation (bottom) with the text prompt of
urban scenes. This process involves utilizing multi-view ap- windows”.

8.7. Background Reconstruction using 3DGS



Figure 13. Two types of car body materials with different rough-
ness. Vehicles in the left column are painted and vehicles in the
right column are not painted.

pearance observations and pseudo-semantic labels obtained
from InverseForm [9]. The HUGS is trained for a total of
30,000 iterations, using two front-perspective cameras and
two side-look fisheye cameras in each sequence. Each se-
quence encompasses 40 frames both prior to and following
the target frame. For this reconstruction process, we adhere
to the configurations defined by the HUGS. Notably, when
converting a static car into our optimized CAD model, we
can use inpainting methods [74] for background inpainting
to animate the car without leaving holes in the ground.

9. Implementation Details of Experiments
9.1. Baselines Implementation

During appearance comparison, we evaluate 1800 images of
30 models rendered from 360° views and report FID/KID
scores comparing with 1800 reference images collected
from [67]. Besides, we report the LIPIS scores by compar-
ing the difference between input reference vehicle images
and CAD renderings under matched poses.

PixelNeRF. PixelNeRF [73] is an image-based recon-
struction method using a conditional implicit function. It
supports single-view reconstruction tasks on real-world im-
ages. We use the official model pre-trained on ShapeNet
[10] to evaluate the performance. We input our single-view
images to the PixelNeRF and rendered the reconstructed
neural radiance field in 360° with 180 frames.

Wonder3D. Wonder3D [42] is a image-based single view
3D generation method using diffusion priors. We use the
official pretrained model to evaluate its single-view genera-
tion quality on our input images.

LRM. LRM [26] is a conditional implicit function based
single view 3D reconstruction method with large scale train-
ing. Since the official LRM implementation hasn’t been
open-sourced, we use the open-sourced implementation
OpenLRM [24]. When inferring on single view image, we
simply use its open-sourced pre-trained model.

HUGS. As described in 8.7, we employ HUGS to recon-
struct the urban scene, including the target vehicle. The ex-
traction of the target vehicle requires identifying the specific
Gaussians that constitute the vehicle. Fortunately, our ap-
proach achieved the 3D semantic reconstruction facilitated

Labor Cost Method ‘ FIDJ KID| LPIPS|
High OpenShape [39] 73.10  0.0453 0.5761
Middle UrbanCAD (w/oopt.) | 81.05 0.0567 0.6174
Low OpenShape* [39] 116.36 0.0990 0.6676
Middle UrbanCAD (Ours) 62.80 0.0479 0.5242

Table 4. Quantitative Comparison on the photorealism of re-
trieved CAD models with different kinds of materials.

by HUGS, where every 3D Gaussian possesses a semantic
label. This allows for extracting the target vehicle by select-
ing 3D Gaussians that lie within the bounding box and carry
car semantic labels. By manipulating the position and ori-
entation of the 3D Gaussians with a transformation matrix,
we can easily manipulate the vehicle representation.
UrbanCAD (w/o opt.). UrbanCAD (w/o opt.) is imple-
mented by directly using the official pre-trained checkpoint
of Openshape [39], a multi-modality joint representation
method, to retrieve the CAD models from Objaverse [15]
dataset according to the input single-view images. Note that
while Objaverse includes vehicle CAD models with high-
quality texture maps, these require significant manual labor
and cannot be optimized to fit observation data. In contrast,
our method only requires CAD models with base colors as
input, reducing the need for human effort. We further evalu-
ate the quality of these labor-intensive handcrafted textures
in Table 4. OpenShape [39] refers to the retrieved CAD
models with external handcrafted texture maps, while Ur-
banCAD (w/o opt.) refers to the CAD models with base
colors. OpenShape* [39] denotes the retrieved CAD mod-
els without any materials. UrbanCAD (Ours) refers to CAD
models with our optimized materials. The results show that
our method generates materials that better fit the observa-
tions, achieving comparable or superior quality to the labor-
intensive handcrafted texture maps.

LatentPaint. LatentPaint [45] is a mesh texturing method
using a generative model. When implementing LatentPaint,
we found its open-sourced code doesn’t support textual in-
version. Therefore, we use ChatGPT4 [3] to implement tex-
tual inversion by asking ChatGPT4 to estimate the colors of
the input vehicles. After we get the colors described in the
text, we use the official implementation of LatentPaint to
accomplish the mesh texturing task.

Paint3D. Paint3D [75] is a SOTA mesh texturing method
using diffusion model. It generates high-resolution tex-
tures in a coarse-to-fine manner and supports texutre trans-
fer from a single view image using IP-Adapter [70]. In our
implementation, we directly use its open-source code and
checkpoints to do the inference.

PhotoScene. Since the procedural graph library used in
PhotoScene is different from our method, which may lead
to unfairness, we implement PhotoScene on our pre-defined
procedural graph library. Specifically, we directly assign the
metal material used in our method and further optimize the
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Figure 14. LDR to HDR reconstruction pipeline. The upper half obtains the HDR panorama from the LDR input. The other half stitches
the origin panorama with the predicted HDR sky to get the spatially varying lighting

material, since retrieving materials based on visual similar-
ity proposed in Photoscene will lead to severe degradation
of appearance.

9.2. Synthetic Data Generation

We utilize a series of 3d bounding boxes to control the
movement of vehicles. We construct our synthetic data for
self-driving perception system testing in 3 different trajec-
tories as illustrated in Fig. 15. Specifically, trajectory 1 in-
volves vehicles moving normally on the road. Trajectory
2 includes scenarios of vehicles rotating 360°. Trajectory
3 involves vehicles moving in near and partially obscured
views, which are typically more challenging for perception
models. For each group of synthetic data, there are 60 im-
ages for Trajectory 1, 90 images for Trajectory 2, and 120
images for Trajectory 3. When constructing scenarios us-
ing UrbanCAD without lighting estimation, we position six
uniform point lights along the positive and negative X, y,
and z axes.

9.3. Perception Systems Implementation

For YOLOVS instance segmentation method, we use the of-
ficial model yolov8n pre-trained on COCO dataset [35].
For the Mask2Former instance segmentation method, we
use the official pretrianed models with different backbones
on the cityscapes dataset [13].

9.4. Computing Resource

We use a single RTX3090 GPU to perform material opti-
mization. Optimizing a material takes about 35 seconds for
300 optimization epochs.

10. Functionality

Since our created vehicle models are fully controllable, we
showcase more editing results including component editing,
relighting, material transfer, 360° rotation, and novel view
rendering.

10.1. Component Editing

Our produced 3D vehicle models support easy component
editing mainly due to the handcrafted disentangled geom-
etry as shown in Fig. 11. Note that complete component
editing requires human effort for animation, such as set-
ting joint types and parameters in Blender. Additionally,
some retrieved handcrafted CAD models may have merged
geometry, for example, the four wheels are merged in one
mesh. For these cases, simply hiding other vehicle com-
ponents and entering the edit mode to separate the wheels
by selection in the Blender can solve the problem with
small manual efforts. However, we notice that some ve-
hicle CAD models have been post-processed by geometry
merging, which means the loss of part controllability. For-
tunately, most handcrafted vehicle CAD models in the Ob-
javerse still preserve part controllability without being post-
processed, and many post-processed CAD models still have
disconnected geometry, which can be manually separated
by Blender “Separate Selection” operation after selecting
connected geometry (“Select Linked” function in “Select”
menu). Besides, more corner case results are displayed in
Figure 16 thanks to the representation of CAD models. In
addition to the editing results mentioned earlier, we can gen-
erate more scenes, using the powerful physical simulation
effects in Blender. By assigning physics properties to the
vehicle model, we can create collision scenes or even simu-
late car accidents in Blender.
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Figure 15. Illustration of our synthetic data during self-driving system testing.

(c) Tire rolling.

Figure 16. More corner cases.

10.2. Relighting
Realistic insertion results are shown in Figure 17. We utilize

the LDR and HDR pairs from online databases to perform
the relighting.

10.3. Material transfer

(c) Material transferred model

Material transfer results are shown in Figure 18. Since we
have obtained the semantic meaning of CAD model mate-
rial designs, we can easily transfer the part-aware material
from one to another.

Figure 18. Material Transfer.



Figure 19. Novel View Synthesis

10.4. Novel view rendering

We showcase our novel view rendering results after recon-
structing the background using the implicit function and in-
serting our produced vehicle model, as shown in Fig. 19.
Our method can produce high-fidelity rendering results
of both background scenes and foreground vehicles under
novel viewpoints.

11. Additional Experiments and Analysis
11.1. Lighting Estimation Comparison

We conduct lighting estimation comparison experiments
with three baselines as shown in Fig. 22. (1) lighting es-
timation method using the generative model: Diffusion-
Light [47]. (2) lighting estimation method with the auto-
regressive network: SOLD-Net [58]. (3) lighting esti-
mation method using ray-tracing: ChatSim [64]. For the
DiffusionLight, we use the open-sourced official code and
checkpoints and take the single-view perspective image as
input. For the SOLD-Net, we manually select two points
on the ground to mark the area where the network estimates
the lighting. After obtaining the output results, we selected
the HDR image that closely matched the lighting of the real
scene for testing. For the ChatSim [64], we used the view
directly ahead of the vehicle as the network input. We also
present the quality results of UrbanCAD without lighting
estimation in Table 2, where we use six point lights po-
sitioned in the positive and negative X, y, and z axis. As
demonstrated in the Fig. 22, our method performs better
than the baselines, especially in sunny weather where the
sun is absent from the perspective images. This is because
our fisheye-based method has a 360° view of the environ-
ment to accurately capture the location and existence of the

(b) Scenarios with CAD model with opitmization

Figure 20. Quality results on self-driving perception system.

Figure 21. Failure Cases

sun. However, our method may have limitations in estimat-
ing the lighting for objects in the shadow. This is due to the
presence of overexposed areas in the fisheye camera’s cap-
tured image. When these overexposed areas are combined
into a panorama, they are given higher brightness, resulting
in artifacts when lightening the vehicles in shadow in the
final rendering.
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Figure 22. Lighting estimation comparison between ours, DiffusionLight [47], ChatSim [64], SOLD-Net [58], and ours without lighting
estimation. In the setup of ours (w/o lighting estimation), the vehicles are illuminated by six point lights positioned along the positive and
negative x, y, and z axes. The results show that our method estimates environmental lighting more accurately, particularly in sunny weather.

Method | FID] KID|

NeRS [76] (Surrounding) | 110.55 0.0780
NeRS [76] (Partial) 206.46 0.1685
UrbanCAD (Ours) 79.50  0.0530

Table 5. Quantitative comparison to NeRS on MVMC dataset
in both surrounding and partial observation. Note that our method
uses only a single-view image as input.

11.2. Quality results of perception system

In Fig. 20, we show the quality result of different percep-
tion results on synthetic data created by UrbanCAD (Ours)
and UrbanCAD without material optimization. We find the
perception system may fail to work in the synthetic data
constructed with the vehicle models with unrealistic mate-
rials.

11.3. Failure Cases

we provide failure cases in Fig. 21. Our method may pro-
vide unsatisfactory results when the retrieved CAD model
is defective (e.g., missing wheels), when the reference vehi-
cle has multiple colors in one component (e.g., ambulance),
or when the vehicles in the reference view are rarely seen
(e.g., heavy-duty truck).

| Chamfer Dist.|  Volume IOUT
Ours ‘ 0.052 0.636
Wonder3D | 0.058 0.588

Table 6. Geometry quality

11.4. Geometry quality.

We randomly select 30 vehicles from the ShapeNet dataset,
encompassing various types, and retrieve their correspond-
ing models from the Objaverse dataset. We report the
Chamfer Distance and Volume IOU in Table 6. Our re-
trieved models’ geometry quality surpasses the reconstruc-
tion baseline, Wonder3D [42], as our retrieved CAD mod-
els often exhibit better geometry quality in unobservable re-
gions.

12. Broader Impact

UrbanCAD may help the development of self-driving sim-
ulation technology, which can further encourage the devel-
opment of the self-driving industry. However, our method
may be used to create some false urban scenes, leading to
some social problems.
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