Towards Effective and Sparse Adversarial Attack on Spiking Neural Networks
via Breaking Invisible Surrogate Gradients

Supplementary Material

S1. Derivation of Potential-Dependent Surro-
gate Gradient

We adopt the two-point zeroth-order method to calculate the
gradient of the firing function approximately [22]:
G?(u;z,0) = Plu +20 = Vin) — hlu =20 - Vth)z.
20
D
Due to the firing function defined in Eq. (2) of the main
text, the two-point zeroth-order can be simplified as:

[
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0, otherwise

Since z is sampled from the distribution )\, the surrogate
gradient equals to the expectation of the two-point zeroth-
order [20]:
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As demonstrated in Sec. 4.1, u + z6 follows a normal
distribution NV (u, 02), where u denotes the mean of mem-
brane potential, and ¢ is the standard deviation of the mem-
brane potential. Therefore, z ~ N(45%, ‘g—j) Following
the requirement z ~ N(0, 1) in the two-point zeroth-order

method, we set § = o, and when u =~ u, we get:
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Here, we follow the TAB [14] to adopt the temporal ac-
cumulated channel-wise standard deviation o of membrane
potential.

). (84)

S2. Algorithm of Sparse Dynamic Attack

Algorithm 1 Sparse Dynamic Attack (SDA)
Input: Classifier f, benign image x, label y.
Parameters: Initial gradient selection count k;,,;;,
maximum number of iterations V.

Output: Adversarial example x4, .

1: #Generation Process:

2: Initialize perturbation mask m < 0
3: Initialize contributing FDs F D¢ < oo
4: Initialize 20 + x
5: forn=0to N —1do
6: Calculate the gradient g(x™) > Eq. (12)
7: gc+—g-((1-2x™)-g <=0)-(1—m)>Eq. (14)
8: k«+ (n + l)k””t
9 p1,pa,-. .., Pk < argtopk(|g°|) > Eq. (15)
10: fori=1to k do > Parallelized
11 Calculate F'D,, (x™) > Eq. (16)
12: if (1 - 225, ) - FD,, <=0then > Eq.(17)
13: FDy, < FD,,
14: Mp, < 1
15: end if
16: end for
172 "l xz-(1-m)+(1—x)-m > Perturb
18: if z"*! is adversarial then
19: Tady — x"TT
20: break
21: end if
22: if n == N — 1 then
23: Attack failed
24: end if
25: end for
26: #Reduction Process:
27: Construct sorted perturbed indices S > Eq. (18)

28: Initialize L + 0, R + len(S) — 1

29: while L <= R do

30: j+ [EEE]

31: ! g0 Tado

32: ) o [S0:j+1]] - 1—a!, [S[0:j+1]]
33: if «’ , is adversarial then

adv
34: L+—j+1
35: L final < m;dv
36: else
37: R+—j—-1
38: end if

39: end while
40: return final adversarial example  f5,q;




S3. Adversarial Threat Model

As shown in Fig. S1, in white-box attacks, the attacker
leverages gradients to perform attacks. As the activation
in ANNs has a well-defined gradient, the gradients can be
directly calculated through the model weights and archi-
tecture, and the attacker does not require training details,
which are useless for attack.

In contrast, the activation in SNNs does not have exact
backward function. During the training stage, the surrogate
gradient is adopted as the backward function. However, the
inference model does not store the backward function used
during training; further, as shown in Tab. 3, adopting it for
attack does not guarantee the performance. Therefore, the
invisible surrogate gradients means: the backward func-
tion in training stage is invisible during inference and attack,
and the optimal backward function is uncertain.

In summary, the adversarial threat model in our paper is
identical to white-box ANN attacks, which is: the attacker
knows the weights, architecture, and the activation’s for-
ward function of the victim inference model. The back-
ward function is inaccessible. This adversarial threat model
is suitable for real-world situations: the attacker obtains
a neuromorphic device, where the backward function is
served as a training skill and not stored in the device.
Instead of adopting model-independent backward functions
[3, 11], our adaptive PDSG effectively increases the attack
success rate.

S4. Details of Experiments

Details of datasets. CIFAR10/100 [16] dataset contains
60,000 images with 10/100 classes, which are split into the
training set with 50,000 images and test set with 10,000 im-
ages. The input size is 32x32.

ImageNet [7] dataset contains 1,281,167 images as train-
ing set and 50,000 images as validation set. The number of
classes is 1000, and the input size is 224 x224.

NMNIST [23] dataset is constructed by saccading the
MNIST dataset [17] using DVS. The training set contains
60000 samples, and the test set contains 10000 samples.
The size of frames is 34 x34.

DVS-Gesture [1] dataset includes samples of hand ges-
ture recorded by DVS128 camera. The training set contains
1176 samples, and the test set contains 288 samples. The
size of frames is 128 x 128.

CIFAR10-DVS [18] dataset is converted from CIFAR10
[16] dataset, including 10000 samples with 10 classes. We
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Figure S1. White-box attacker knows weights and architecture of
the model, which is enough for attacking ANNs. For SNNs, the
gradient of activation is not exposed during the inference. Our
PDSG provides a solution for the problem of uncertain gradient.

split these 10000 samples into 9000 training samples and
1000 test samples. The size of frames is 128 x 128.

Details of models. We adopt spiking ResNet-18 [13],
spiking VGG-11 [3], VGGSNN [8], PLIFNet [10], and hier-
archical spiking transformer (HST) [27] in our experiments.
The spiking ResNet-18 and spiking VGG-11 maintain the
same architecture as the original ResNet-18 [12] and VGG-
11 [24], respectively, with the activation function replaced
by LIF neurons. The VGGSNN removes the last two lin-
ear layers of the spiking VGG-11. The PLIFNet contains
three convolutional layers and two linear layers for NM-
NIST classification. The HST attains 84.28% accuracy on
ImageNet, surpassing other current spiking transformer ar-
chitectures.

The timestep of models for static datasets is set to 4, and
for dynamic datasets is set to 10. We adopt 7 = 0.5 and
Vin, = 1 for all LIF neurons.

Training details.  All experiments are conducted on
NVIDIA Tesla A100 GPU with 40GB memory. We train
all SNN models with STBP [25] for 600 epochs (static
datasets) or 200 epochs (dynamic datasets). We adopt the
stochastic gradient descent optimizer with 0.1 learning rate
and 0.9 momentum for spiking ResNet-18, and adopt the
adam [15] optimizer with 0.001 learning rate for other mod-
els. The weight decay is set to 0, and we use the cosine
annealing scheduler [21] to adjust the learning rate. Addi-
tionally, TET [8] loss is utilized to improve the accuracy.
The seed is set to 0 across all experiments.

SS. Details of Fixed Surrogate Gradients

In Sec 4.3 of the main text, we conduct extensive exper-
iments to validate the effectiveness of various attack-phase
SG, including fixed SGs and our PDSG. The fixed SGs con-
sist of rectangular SG [25], triangle SG [8], and ATan SG
[9]. The rectangular SG is described as:
ds ﬁ, —w < |u—Vip| <w
ou o, '

S5
otherwise (55)
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Figure S2. Illustration of various fixed SGs and our PDSG.

Here w represents the width of the SG. Typically, w is
a hyper-parameter, and we adopt w = 1,2,0.5 in experi-
ments. The triangle SG is:

0 1
G = om0 —lu=Vall. 6
Here ~ controls the shape of the SG, and we set v = 1

in our experiments, which is the default setting in [8]. The
ATan SG is denoted as:

ds e’
ou  2(1+ (Za(u—Vip))?)'

(S7)

We use the default « = 2 in our experiments. We depict
all SGs above and our PDSG in Fig. S2.

S6. Visualization

In this section, we present the visualization result of our
SDA and the SpikeFool [4] in attacking binary dynamic im-
ages. The visualization on NMNIST dataset is shown in
Fig. S3. After attacking, the label of the original image is
changed from 5 to 8. Our SDA modifies 144 pixels, which
is only 0.62% of the pixels of the image. In contrast, the
SpikeFool modifies 321 pixels, indicating that the perturba-
tions are easier to be detected.

The visualization on DVS-Gesture dataset is displayed in
Fig. S4. Our SDA only modifies 0.1% of the pixels, render-
ing the adversarial example virtually indistinguishable from
the original image to both human observers and automated
detection systems.

We also depict the visualization result on CIFAR10-DVS
dataset in Fig. S5. In this case, our SDA modifies a mere
0.05% of the pixels, and the perturbations only exist in the
first two frames. Therefore, it suggests that the model fo-
cuses on the first two frames to perform classification, and
our SDA exploits this behavior to generate imperceptible
perturbations.

Static Evaluation Dynamic Evaluation

Acc.

T (%) Attack ASR. (%) ASR.  Mean  Median
(Lo < 200/800) (%) Lo Lo

s 765 SpikeFool 45.0/99.0 100.0 270.24  230.00
"~ SDA(Ours) 77.0/100.0 100.0 131.08 86.50

10 782 SpikeFool 19.0/70.0 100.0 674.839 491.00
" SDA(Ours) 38.0/82.0 100.0 458.02  303.00

20 824 SpikeFool 4.0/11.0 72.0 373349 2705.00
" SDA(Ours) 5.0/13.0 89.0 4905.00 2570.00

Table S1. Discussion of attacking spiking ResNet-18 with various
timesteps on CIFAR10-DVS dataset. T denotes the timestep, and
ASR. denotes the attack success rate. The best results are in bold.

S7. Discussion of Timesteps in Binary Attack

Since the performance of the SNN model depends on the
timestep, we discuss the impact of the timestep in attacking
binary dynamic images. As the imperceptibility of the SCG
[19] and the GS Attack [26] is insufficient, we only compare
our SDA with the SpikeFool [4]. The results of attacking
spiking ResNet-18 on CIFAR10-DVS dataset is illustrated
in Tab. S1. Our SDA outperforms the SpikeFool in terms of
the attack success rate and sparsity. In timestep = 20, the
difficulty of the attacks increases as the number of the input
pixels is large, while our SDA still exhibits stable perfor-
mance of 89% ASR. Since we only record ¢y of successful
attack, the mean of ¢y of our SDA is higher than that of
SpikeFool. Notably in timestep = 5, our SDA achieves a
median of 86.5 ¢y, which is only 0.05% of the input pixels.

S8. Discussion of Initial Selection Count in
SDA

In this section, we conduct experiments with various
choices of k;,;; in our SDA. The results are shown in
Tab. S2. We first set £ = k;,;: for each iteration, indi-
cating that the £ is fixed. As the calculation of the gradients
is a course estimation , significant gradients are easy to be
ignored when k is fixed at 10, causing low attack success
rate. The mean and median of ¢ is extremely low since
we only record ¢y and count of iterations for successful at-
tacks. Therefore, selecting a fixed low k induces poor attack
performance. Conversely, setting a fixed £ = 100 achieves
100% attack success rate but at the cost of a relatively larger
.

To achieve a stable attack and avoid the hyper-parameter
significantly influencing the performance of the attack, we
adopt the incremental k strategy in our SDA. The motiva-
tion comes from preventing gradient vanishing. In the early
stages of the generation process, the model’s output is dis-
tant from the classification boundary, causing substantial
gradients becoming zero. In this case, only a few gradi-
ents are valid and we only require to leverage these gradi-
ents to calculate their FDs. However, in the later stages, any
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Figure S3. Visualization of the our SDA and SpikeFool on NMNIST dataset. The channel of p = on and p = of f is indicated in green
and blue color, respectively. Our SDA modifies only 0.62% of pixels to change the classification result from 5 to 8.

Static Evaluation Dynamic Evaluation

ASR. (e = 2/255) / (¢ = 8/255)

- Acc.

Kinit ASR. (%) ASR. Mean Median Mean T Attack PDSG

(o < 200/800) (%) Lo Lo Iterations (%) STBP RGA HART (Ours)
10 (Fixed) 12.0/12.0 120 13.67 1250 3.17 025 94.52 FGSM 41.81/63.79 29.88/49.35 42.90/57.80 45.04/82.88
20 (Fixed) 27.0/32.0 32.0 8547 54.00 10.53 ' ’ PGD 73.48/99.89 62.00/96.05 79.68/99.41 70.41/99.99
50 (Fixed) 38.0/82.0 92.0 361.86 256.50 16.78 05 94.72 FGSM 38.21/52.36 31.14/45.80 37.30/46.72 43.98/79.56
100 (Fixed) 34.0/83.0 100.0 464.53 309.50 9.97 ’ ’ PGD 66.74/99.81 61.97/92.47 66.77/98.64 69.62/100.0
1 (Incremental) 41.0/84.0 99.0 426.97 280.00 56.11 075 94.33 FGSM 32.67/45.22 26.99/34.47 33.62/43.74 42.82/79.64
5 (Incremental) 38.0/84.0 100.0 439.55 285.50 17.82 ' ’ PGD 60.60/99.42 48.69/89.30 61.16/97.71 68.00/99.96
10 (Incremental) 38.0/82.0 100.0 458.02 303.00 12.33 10 9424 FGSM 29.57/40.57 27.48/35.42 31.52/41.99 43.37/77.98

37.0/80.0 100.0 466.72 314.50 8.70
34.0/75.0 100.0 518.95 341.00 5.64

20 (Incremental)
50 (Incremental)

Table S2. Attack success rate and dynamic evaluation for attacking
spiking ResNet-18 on CIFAR10-DVS dataset with various choices
of kini: in our SDA. Fixed represents k is equal to k;n: in each
iteration. Incremental denotes k is incremental by k;ni: in each
iteration.

modified pixel could potentially make the input adversarial,
necessitating consideration of a wider range of pixels with
contributing gradients. Consequently, we adopt the incre-
mental k£ in our SDA, indicating that k is incremental by
kini: in each iteration.

As shown in Tab. S2, the sparsity of perturbations de-
creases with an increase of k;,;¢. Since the contributing FDs
and reduction process effectively remove redundant pertur-
bations, the ¢, and attack success rate will not change dras-
tically with variations in k;,,;;. However, an extremely low
k;ni+ may cause failed attacks (99% ASR in k;,,;; = 1). Ad-
ditionally, a low k;,;; implies that the generation process
requires more iterations to find an adversarial example, thus

PGD 54.35/95.39 48.10/87.99 57.23/94.89 68.21/99.94

Table S3. Attack success rate for attacking spiking ResNet-18 with
various leakage factors on CIFAR10 dataset. T denotes the leakage
factor. The best results are in bold.

increasing the attack time. Therefore, to make a trade-off
between the imperceptibility of perturbations and the time
costs of the attack, while ensuring 100% attack success rate,
we choose k;,,;; = 10 in our SDA.

S9. Discussion of Leakage Factors

To verify the generalization abilities of our PDSG and SDA,
we conduct experiments on models with various leakage
factors. First, we validate the performance of our PDSG
in attacking spiking ResNet-18 on CIFAR10 dataset. The
results are illustrated in Tab. S3. Although our PDSG is
surpassed by HART [11] in PGD (e = 2/255) attack when
7 = 0.25, likely due to the compatibility of HART’s surro-
gate function with the model, our PDSG exhibits superior
performance in all other experiments.

In Tab. S4, we demonstrate the performance of our SDA
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Figure S4. Visualization of the our SDA and SpikeFool on DVS-Gesture dataset. The channel of p = on and p = of f is indicated in
green and blue color, respectively. Our SDA modifies only 0.10% of pixels to change the classification result from left hand wave to hand

clapping.
Acc Static Evaluation Dynamic Evaluation ASR. (%) (e = 2/255) ASR. (%)(e = 8/255)
(%)' Attack ASR. (%) ASR.  Mean Median Dataset ~ Architecture PDSG Square RayS PDSG Square Ray$S
(o < 200/800) (%) Lo Lo (PGD) (PGD)
025 825 SS];)AI((S(I;OOI) ;3876158 iggg 162369:‘5.1235) 3(9]2(5)3 Eesgetig 69.62 29.79 13.40 100.00 66.10 52.96
urs .0/67. . X X esNet
05 75 _SpikeFool 19.0/700 1000 67489 491.00 CIFARIO )4y, trainedy 1008 4479 18.10° 6216 5654 33.30
’ " SDA(Ours) 38.0/82.0 100.0 458.02 303.00 VGG11 39.20 26.86 12.81 99.71 5742 56.92
075 78.0 SpikeFool 38.0/87.0 100.0 374.43 271.00 CIFAR100 ResNetl8 78.50 50.67 32.64 99.83 78.80 71.80
' " SDA(Ours) 57.0/92.0 100.0 261.16 152.50
10 769 _SpikeFool 39.0/97.0 100.0  309.43  253.00 Table S5. Attack success rate under comparison with black-box
SDA(Ours) 67.0/99.0 100.0 17559 105.50 attacks. All inputs adopt direct coding. The best results are in

Table S4. Attack success rate and dynamic evaluation for models
with various leakage factors on binary dynamic images. T denotes
the leakage factor. The best results are in bold.

in attacking spiking ResNet-18 on CIFAR10DVS dataset.
Our SDA outperforms the SpikeFool across diverse leakage
factors. It is noteworthy that the ¢, of the perturbations in-
creases as the leakage factor decreases, indicating that the
model may exhibit greater robustness with a lower leakage
factor.

S10. Comparison with Black-box Attacks

In contrast to white-box attacks, black-box attacks also
threaten neural network models. Without accessing the
weights and architectures of the models, black-box attacks
only require the inputs and outputs of models, and lever-
age them to generate adversarial examples. Transfer-based
black-box attacks are already evaluated in [3, 11]. To val-
idate our PDSG’s ability of optimizing the gradient flow,

bold.

we conduct experiments with score-based black-box Square
Attack [2] and decision-based black-box attack RayS [5] in
Tab. S5. The results demonstrate that our PDSG outper-
forms black-box attacks across various models and datasets,
except adversarially trained models. As ResNet18 is specif-
ically adversarially trained by PGD attack with € = 2/255,
the PDSG performs poorly when ¢ = 2/255. However,
when the attack intensity increases to ¢ = 8/255, our PDSG
surpasses other black-box attacks.

S11. Results of Adaptive Attack

In attacking static images, we conduct experiments of
APGD [6] attack, which is an adaptive version of the PGD
attack. In Tab. S6, the results show the same trend as the
PGD attack in Tab. 1, demonstrating that our PDSG per-
forms the best and has stable performance.
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Figure S5. Visualization of the our SDA and SpikeFool on CIFAR10-DVS dataset. The channel of p = on and p = of f is indicated in
green and blue color, respectively. Our SDA modifies only 0.05% of pixels to change the classification result from ship to airplane.

ASR. (%) (¢ = 2/255) ASR. (%) (¢ = 8/255)
Dataset Architecture STBP RGA HART PDSG STBP RGA HART PDSG
(Ours) (Ours)
ResNetls 7136 67.04 7149  75.18 99.67 9477 9854 99.97
CIFAR10 | ROsNeU8 o 1793 2120 2156 4139 5737 7074 7192

(Adv. trained)
VGG11 4696 4640 54.82 4558 9925 88.51 98.13  99.84
CIFAR100 ResNet18 85.12 82.62 89.54 8321 99.68 98.62 99.67 9991

Table S6. Comparison with state-of-the-art approaches on attacking static images using APGD attack. ASR. denotes the attack success
rate. € is the attack intensity. STBP denotes attacking using training-phase SG. All inputs adopt direct coding. The best results are in bold.

S12. Evaluation of Computational Cost Attack time per sample (s)

Dataset Architecture  Attack STBP RGA HART PDSG
(Ours)

FGSM 033  0.31 0.40 0.55

To evaluate the computational cost of our method, we adopt

batch_size = 1 and perform attacks on both static and dy- CIFARIO  ResNetl8 —pem—— 15503 333
namic datasets. In Tab. S7, since our PDSG requires the
computation of the standard deviation of membrane po- Table S7. Computational costs in attacking static images.

tential, the efficiency of our PDSG is slightly lagging be-
hind. As shown in Tab. S8, when attacking binary dynamic
images, our SDA performs more efficiently than Spike-

Attack time per sample (s)

. Dataset  Archit dient . DA
Fool. Although SCG and GSAttack execute fast, their ¢ ataset. - Architecture Gradient g0, gpikeFool GSAtack ((Sjurs)
are much larger than ours. Specifically, when cooperat- STBP 026 1244 3.65 748
ing with the PDSG, our SDA achieves a significant effi- N-MNIST PLIFNet ~PDSG

ciency improvement, since the PDSG optimizes the gradi- (Ours) 024 27.18 214 095

ent flow and effectively reduces the number of iterations.

Table S8. Computational costs in attacking binary dynamic im-

ages.
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