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In this appendix, we provide additional discussions and results to supplement the main paper. In Sec. A, we present
more architecture and design details of our 3DENHANCER. In Sec. B, we provide detailed information about our training
dataset, including the augmentation pipeline and illustrative examples. Sec. C highlights some interesting findings related to
inference. More results and comparisons are presented in Sec. D to further demonstrate our performance. We also include a
demo video (Sec. D.6) to showcase rendering results for 3D reconstruction enhancement.
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A. Architecture and Design
A.1. Pose-aware Encoder

Our pose-aware encoder is adapted from the convolutional encoder of LDM [12]. As shown in Fig. 2, the output of the
pose-aware encoder serves as the conditioning features for the trainable copies in our ControlNet [21]. The details of its
hyperparameters are summarized in Tab. A. This encoder employs 64 channels and a single residual block to enhance effi-
ciency. Additionally, we incorporate cross-view self-attention [14] into the middle layer of the encoder to improve inter-view
consistency. To ensure compatibility with the number of latent channels in the DiT blocks, the output z-channels number is
set to 1152. The final convolutional layer in the encoder uses a stride of 2 to match the dimensions of the DiT block latents.
All other hyperparameters are kept at default values.

A.2. View-Consistent DiT Block

The view-consistent DiT block is based on the PixArt-Σ [2] architecture. Consistent with PixArt-Σ, we use the T5 large
language model as the text encoder for conditional text feature extraction, and the frozen VAE from SDXL [10] to capture the
latent features of images. PixArt-Σ consists of 28 Transformer blocks. For the ControlNet [21] implementation, we utilize
trainable copies of the first 13 base blocks, augmenting each copied block with zero linear layers before and after it. The
output of the i-th trainable copied block is added to the corresponding frozen base i-th block. The multi-view row attention
with near-view epipolar aggregation is an additional attention layer that is inserted into both the DiT blocks and the copied
ControlNet blocks. This layer is positioned after the self-attention layer, as illustrated in Fig. 2. During training, we train the
entire ControlNet blocks and every inserted multi-view row attention layer in the DiT blocks. Detailed hyperparameters for
the DiT block and the inserted row attention layers are provided in Tab. A.

A.3. Weight for Two Nearest Views Aggregation

In Eq. 3, we compute the fusion weight w based on both the physical camera distance and the similarity of token features.
First, we consider the geometric distance weight wd, which reflects the proximity of the camera:

wd =
dv,v+1

dv,v−1 + dv,v+1
, (A)

where dv,k represents the geometric distance between the camera of view v and the camera of view k ∈ {v − 1,v + 1}.
To ensure the nearest-view weight calculation also incorporates token feature similarity, we augment the weight token-wise
with token similarity:

w =
Si
v,v−1 · wd

Si
v,v−1 · wd + (1− wd) · Si

v,v+1

, (B)

where Si
v,k denotes the cosine similarity of the corresponding tokens, i.e., fv[i] and fk[Mv,k[i]].

Table A. Hyperparameters for the pose-aware encoder, view-consistent DiT block, and the inserted multi-view row attention layers in
our 3DENHANCER. The table follows the hyperparameter table style from [9, 12]. We train our model on images with a resolution of
512× 512 using 4 views.

Hyperparameter DiT

Layers 28
Training views shape 4× 512× 512× 3
f 8
Patch size 2
Embedding dimension 1024
Hidden size 1152
z-shape 4× 1024× 1152
Head number 16
CA sequence length 300

Hyperparameter Pose-aware Encoder

f 8
Channels 64
Channel multiplier 1, 2, 4, 4
z-channels 1152

Hyperparameter Row Attention

Head number 16
Positional encoding sine-cosine
Epipolar aggregation True
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B. Dataset
B.1. Dataset

The G-buffer Objaverse dataset [11] contains a broad variety of 3D objects categorized into 10 types: Human-Shaped,
Animals, Daily Objects, Furniture, Buildings and Outdoor Objects, Transportation, Plants, Food, and Electronics. To ensure
high standards, we exclude any objects labeled as “Poor-quality.” We observe that the original captions in G-buffer Objaverse
are simple and lack detailed information. Therefore, we adopt captions from 3D-Topia [5], which provide more informative
and accurate descriptions for a subset of objects in Objaverse. We update the caption of each object accordingly if it exists
in 3D-Topia, resulting in the refinement of approximately 45% of the captions. Additionally, to facilitate CFG [4], we omit
the text condition at a rate of 0.2. Such settings enhance the robustness of our method to text conditions with varying levels
of detail. For the in-the-wild dataset, we remove backgrounds and center objects as previous works [7, 8, 17]. We uniformly
apply a white background to the input views.

Texture DistortionCamera Jitter Texture  Deformation Color Shift

GT

LQ

Figure A. Visualization of several examples from our augmentation pipeline. Thanks to the comprehensive augmentation strategy, our
method is able to bridge the domain gap between training and inference.

B.2. Data Augmentation

The visualization of the data augmentation pipeline is shown in Fig. A. During training, we dynamically generate synthetic
training pairs on the fly, and the argumentation is implemented in PyTorch with CUDA acceleration to ensure efficiency.
The pipeline incorporates several stochastic augmentation steps, producing diverse training pairs with varying levels of
degradation. During augmentation, the input views of the same object are either augmented with the same level of degradation
(e.g., the same blur kernel) or with different stochastic augmentations. This strategy encourages the model’s ability to learn
information across views, particularly from those with fewer degradations. We ensure that the augmentation is confined to the
object’s masked area with a slight mask dilation. This allows the white background unaffected, which aligns with real-world
scenarios of low-quality multi-view images. We also set a probability where no augmentation is applied to the input images,
i.e., the low-quality images are identical to the ground truth. In such cases, the model is encouraged to preserve fidelity when
the input images are already of high-quality. Details of several augmentation parameters are summarized in Tab. B. Further
implementation details will be provided in our code release.

C. More Details on Inference
C.1. Multi-View Editing

Benefiting from our comprehensive augmentation pipeline and the robust view-consistent DiT Block, we observe an inter-
esting fact: our method is capable of generating detailed and consistent textures even from extremely coarse or corrupted
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Table B. Several augmentation parameters that are used in our augmentation pipeline.

Argumentation type Parameters

First-order blur prob 0.8
Second-order blur prob 0.3
Blur kernel size range {7, 9, ..., 21}
Blur standard deviation range [0.2, 3]
Gaussian noises prob 0.5
Resize range [0.3, 1.5]
JPEG compression quality factor [80, 100]

Argumentation type Parameters

Final sinc filter prob 0.8
Camera jitter prob 0.2
Camera jitter strength range [0.05, 0.1]
Color shift prob 0.3
Grid distortion prob 0.3
Grid distortion strength range [0.2, 0.5]
No argumentation prob 0.1

multi-view inputs. As shown in Fig. B, our method effectively handles various challenging cases, including multi-views with
(a) extremely blurred textures, (b) masked or missing parts, and (c) significant noise.

(a) (b) (c)

Input M
V

O
urs

Figure B. Examples of handling extremely coarse inputs with 3DENHANCER.

This enables our approach to modify multi-view images in two distinct ways: 1. Applying a black mask to the region
designated for editing and modifying the text prompt to generate the target multi-view images. 2. Adjusting the inference
noise level, where higher noise levels produce more diverse outputs. Using the edited multi-view images, we can subse-
quently modify the reconstructed 3D representations. An example of editing 3D Gaussians generated by LGM [15] through
modifying its multi-view input is shown in Fig. C.

“Schoolbag”

+ noise / black mask

Figure C. Rendered views of edited 3D Gaussians using our multi-view editing approach. By adding a large noise or a black mask, and
leveraging text prompts as guidance, we consistently modify the texture of the bags.

C.2. Color Correction

Previous studies [16, 24] have highlighted that diffusion models often exhibit color shift artifacts, where the global color
scheme deviates from the input images. This is different from our color shift augmentation, which introduces localized color
changes to specific image regions. However, this augmentation also aims to encourage the model to maintain consistent color
reproduction. We observe that integrating a training-free wavelet color correction module [16] can help resolve the global
color scheme shift. As reported in Tab. E, applying wavelet color correction leads to improved fidelity metrics (higher PSNR,
SSIM, and lower LPIPS [22]) for the baseline, but it has minimal impact on our results, showing our robustness against global
color scheme shifts. However, at extremely high noise levels, such as δ = 200, minor global color shifts may still occur in
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our method because the noise may impact the original color information. In such cases, wavelet color correction could be
beneficial, as illustrated in Fig. D.

δ = 200 (w/ Color Fix) Input δ = 200 (w/o Color Fix) δ = 0
Figure D. Minor global color scheme shift at high noise levels. When the noise level δ is small, such as δ = 0, our method maintains
excellent color fidelity. However, at a higher noise level, such as δ = 200 in the example, the output figure’s face appears slightly darker
than that of the input. In this case, the wavelet color correction [16] could help mitigate this issue.

D. More Results
D.1. User Study

To enable a thorough comparison, we conduct a user study to evaluate the enhancement results of multi-view images and
3D reconstructions. For the multi-view image enhancement, each participant is shown 10 sets of randomly selected objects’
multi-view images, enhanced by our 3DENHANCER, RealESRGAN [18], StableSR [16], RealBasicVSR [1], and Upscale-
a-Video [24]. For the 3D reconstruction enhancement, participants are presented with another 10 360-degree rotating render
videos of the 3D Gaussians enhanced by our method, RealBasicVSR [1], and Upscale-a-Video [24]. Their task is to choose
the visually superior enhanced results. A total of 20 participants take part in the study. As illustrated in Fig. E, The results
indicate a strong preference for our method over the compared approach. On average, 74% of users preferred our method for
enhancing multi-view images, while 78% favored it for enhancing 3D reconstruction. These findings strongly demonstrate
the quality and robustness of our approach.

74%

2%
8%

4%
12%

Enhancement on Multi-View Synthesis

Ours RealESRGAN StableSR RealBasicVSR Upscale-A-Video

78%

12%

10%

Enhancement on 3D Reconstruction

Figure E. User study results. Human voters consistently prefer our method over other approaches.
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D.2. Results of Optimizing 3D Gaussians

3D representations can be rendered from multiple views, this nature allows our method to iteratively optimize a coarse 3D
representations. To demonstrate this capability, we adopt Gaussian Splatting [6] as our example due to its high rendering
fidelity and efficiency. Specifically, we implement a pipeline to refine coarse 3D Gaussians checkpoints by leveraging our
enhanced outputs as pseudo ground truth. We randomly select 20 objects from the Objaverse test dataset for evaluation.
Following [13], we fit low-resolution 3D Gaussians using images obtained by bilinearly downsampling the original dataset
images by a factor of 8, resulting in a resolution of 64 × 64 pixels. We use three distinct trajectories for fitting low-resolution
Gaussians, refining Gaussians, and evaluation. As proposed in [3], our refinement process also minimizes a combined loss
function, including a photometric reconstruction loss and a perceptual loss [22]. The perceptual loss emphasizes high-
level semantic similarity between rendered and enhanced images while ignoring inconsistencies in low-level, high-frequency
details. To improve regularization during refining, we sample 100 views along a single smooth orbital path, as increasing the
number of views has been shown to enhance the refining process [3]. The optimization is conducted over 2000 refinement
steps for all methods and takes approximately 130s to refine a single object on one NVIDIA A100 GPU. For comparison, we
evaluate our method against two video enhancement models, RealBasicVSR [1] and Upscale-A-Video [24]. Quantitative and
qualitative results are presented in Tab. C and Fig. F, respectively. Our results demonstrate detailed and sharp outputs, while
other methods exhibit ghosting artifacts and blurry textures. The results highlight the superior performance of our approach
in refining coarse 3D representations.

Table C. Quantitative comparisons of optimizing low-resolution Gaussians. The best results are highlighted in bold.

Metrics Low-Resolution Gaussians RealBasicVSR [1] Upscale-A-Video[24] 3DENHANCER

PSNR ↑ 26.35 27.39 26.20 27.54
SSIM ↑ 0.9120 0.9216 0.9184 0.9337
LPIPS ↓ 0.1135 0.0803 0.0928 0.0756

Low-Resolution Gaussians RealBasicVSR Upscale-A-Video 3DEnhancer (Ours)

Figure F. Qualitative comparisons of optimizing low-resolution Gaussians. During optimization, both RealBasicVSR [1] and Upscale-A-
Video [24] produce ghosting and blurry textures due to inconsistent outputs. Our 3DENHANCER achieves sharp and clear results.

D.3. Results of Generalization to Real-World Objects

We test our model on the constructed OmniObject3D dataset [20], which provides realistic 3D object scans, and also on
complex, richly textured objects from Polycam. Backgrounds are removed as needed using BiRefNet [23]. As shown in
Fig. G, our model effectively enhances real-world objects.
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Figure G. Examples of handling complex real-world objects with 3DENHANCER. Our method generates rich textures on realistic objects.

D.4. Results of Further Fine-tuning Upscale-A-Video

Our work aims to provide a generic framework for 3D object enhancement, supporting enhancing (I) sparse multi-view
images from large angles for multi-view reconstruction networks (e.g., LGM [15]), and (II) coarse 3D model via per-instance
optimization. Existing video diffusion models, e.g., Upscale-A-Video [24], mainly rely on temporal attention for consistency.
They are designed for handling adjacent video frames with minimal spatial variations, without considering camera pose.
Thus, they struggle to establish multi-view correspondences in case (I), where input views vary significantly, leading to
suboptimal results. Additionally, due to the huge GPU memory cost of video diffusion models, they also cannot handle dense
360° views simultaneously, typically working with short video sequences (e.g., 8 frames for Upscale-A-Video), limiting
their performance in case (II) as well. Thus, this study is crucial to explore new and effective modules of sparse multi-view
attention for 3D enhancement, using a pose-aware encoder and an epipolar aggregation mechanism, which together achieve
superior results in both (I) and (II) (see Tabs. 1-3 and Figs. 3 and 4). All baseline methods in the main paper are fine-tuned on
the Objaverse dataset. We further fine-tune Upscale-A-Video with our proposed data augmentation. The results in the Tab. D
and Fig. H show that our method still outperforms the video-based Upscale-A-Video, further supporting our discussion here.

Table D. Quantitative comparisons with fine-tuned Upscale-A-Video (UAV) on synthetic Objaverse multi-view images and Low-Resolution
(LR) Gaussians.

Method Synthetic Objaverse Low-Resolution Gaussians

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

UAV (main paper) 25.57 0.8937 0.1153 26.20 0.9184 0.0928
UAV (further fine-tuned) 26.14(+0.57) 0.9086(+0.0149) 0.0996(-0.0157) 26.69 (+0.49) 0.9197 (+0.0013) 0.0850 (-0.0078)

Ours 27.53 0.9265 0.0626 27.54 0.9337 0.0756

O
bjaverse

L
R

 G
aussian

Input UAV (main paper) UAV (fine-tuned) Ours

Figure H. Qualitative comparisons with fine-tuned Upscale-A-Video (UAV) on synthetic Objaverse multi-view images and Low-Resolution
(LR) Gaussians. With additional fine-tuning using our augmentations, Upscale-A-Video reduces inconsistent artifacts outside the object
area. Our method still shows superior generative capabilities.
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D.5. More Comparisons

In this section, we introduce another baseline from the multi-view image upscale module in Unique3D [19]. This baseline
fine-tunes ControlNet-Tile [21] to enhance RGB views. While the module can sharpen some textures, it struggles to recover
inconsistent or corrupted areas in multi-view images. Our method outperforms Unique3D’s MV Upscale both quantitatively
and qualitatively. The quantitative comparison between Unique3D’s MV Upscale and our method is presented in Tab. E.
Additionally, we provide more visual comparisons of our method with all other baselines, including RealESRGAN [18],
StableSR [16], Unique3D’s MV Upscale [19], RealBasicVSR [1], and Upscale-a-Video [24]. Fig. I and Fig. J showcase the
visual comparisons of multi-view enhancement on synthetic and in-the-wild datasets, respectively.

Table E. Quantitative comparison of enhancing multi-view synthesis on the Objaverse synthetic dataset with Unique3D’s MV Upscale
module. Our method demonstrates clear advantages in restoration fidelity, as measured by PSNR, SSIM, and LPIPS. While applying color
correction improves the output of Unique3D’s MV Upscale module, it has minimal impact on our results when noise level is set to 0,
highlighting our method’s robustness against global color scheme shift issues.

Metrics Unique3D’s Upscale Unique3D’s Upscale (+ color fix) 3DENHANCER 3DENHANCER (+ color fix)

PSNR ↑ 25.75 26.18 27.53 27.50
SSIM ↑ 0.8989 0.9055 0.9265 0.9258
LPIPS ↓ 0.1300 0.1257 0.0626 0.0631

D.6. Video Demo

We also provide a demo video (3DEnhancer-demo.mp4) in our project page, showcasing visual results of 3D reconstruction
enhancement.
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Figure I. Qualitative comparisons on the Objaverse synthetic dataset. Our 3DENHANCER demonstrates promising improvements, with
increased detail and enhanced realism. (Zoom in for best view.)
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Figure J. Qualitative comparisons on the in-the-wild dataset. Our 3DENHANCER yields significant improvements, providing enhanced
detail and consistent output. (Zoom in for best view.)
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