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1. More Compared Methods

We further compare DSPNet with additional state-of-
the-art methods that incorporate 3D-language alignment
pre-training, external datasets, or large language models
(LLMs). As summarized in Tab. 1, despite not leverag-
ing any of these auxiliary enhancements, DSPNet achieves
highly competitive performance on both ScanQA and
SQA3D datasets. This demonstrates the effectiveness of our
approach, highlighting its capability to perform well with-
out relying on extensive pre-training or external resources.

2. Results on “3DQA” dataset

We have previously evaluated our method on ScanQA and
SQA3D, two widely recognized 3D question answering
(3D QA) benchmarks that encompass diverse reasoning
tasks, including spatial attribute recognition, embodied ac-
tivities, navigation, common sense reasoning, and multi-
hop reasoning. To further assess the generalizability of our
approach, we conduct additional experiments on another
3D QA benchmark introduced by Ye et al. [15], named
“3DQA”, which is a human-annotated free-form dataset.
For fair comparison with our method, we fine-tune 3D-
VisTA [16] from scratch on the “3DQA” dataset. As shown
in Tab. 2, Our method achieves EM@1 scores of 52.0%,
outperforming 3D-VisTA (49.3%), demonstrating its effec-
tiveness across different 3D QA benchmarks.

3. More Ablation Studies

Here we provide more ablation studies on our model.
3D Encoder. To evaluate the impact of different pre-trained
3D encoders on our model’s performance, we experimented
with VoteNet [13] and PointNet++ [12]. PointNet++ ex-
tracts local geometric features by hierarchically partitioning
point clouds into nested regions and recursively processing
them into dense point-level visual features, without the uti-
lization of an explicit object detection module. VoteNet,
on the other hand, builds upon PointNet++ by introduc-
ing a voting mechanism and a detection head to perform
3D object detection within the point cloud. It generates
object proposals by aggregating votes from dense point-
level visual features and refines them to localize and clas-
sify objects. In our experiments, PointNet++ is initialized
from the pre-trained VoteNet, which has been pre-trained
on a 3D object detection task in ScanNet [3] dataset. In
the VoteNet configuration, we input object-level visual fea-
tures from object proposals into our Multimodal Context-
guided Reasoning module, rather than using sparse candi-

date point-level visual features that are sampled from dense
point-level visual features. As shown in Tab. 3, PointNet++
outperforms VoteNet, achieving higher accuracy on both the
ScanQA [1] and SQA3D [10] datasets. This suggests that
using a 3D encoder without an object detection head en-
hances the model’s generalization ability in 3D QA tasks.
The absence of an object detector allows the encoder to
learn more generalized and holistic scene features, rather
than focusing on specific object categories.
Image Encoder. To investigate the impact of different pre-
trained image encoders on our model’s performance, we
conducted experiments with Vision Transformer (ViT) [5],
BEiT [2] and Swin Transformer [9]. ViT directly applies
a pure transformer structure by splitting images into fixed-
size patches and processing them sequentially. BEiT em-
ploys a masked image modeling strategy for self-supervised
pre-training, learning visual representations through pre-
dicting masked image patches. Swin Transformer intro-
duces a hierarchical architecture with shifted windows for
computing self-attention, which efficiently handles various
image resolutions. For fair comparison, all experiments are
conducted using the base size of these models. As shown
in Tab. 4, Swin Transformer consistently outperforms other
architectures, achieving the best performance. These results
suggest that advanced image encoders can bolster a model’s
capabilities in 3D QA tasks, primarily due to their enhanced
extraction of multi-view image features that deepen the per-
ception of local texture details within 3D scenes.
Text Encoder. To evaluate the effectiveness of different
pre-trained text encoders, we experimented with BERT [4],
RoBERTa [8] and Sentence-BERT (SBERT) [14] archi-
tectures. BERT utilizes bidirectional training and masked
language modeling to learn contextual representations.
RoBERTa builds upon BERT by implementing optimized
training strategies, such as extended training duration, in-
creased batch sizes, removal of the next sentence predic-
tion task, and dynamic masking. SBERT leverages siamese
network structure to generate semantically meaningful sen-
tence embeddings. In our experiments, we utilize the base
size of each model for fair comparison. According to the re-
sults presented in Tab. 5, SBERT delivers the most notable
performance enhancements. This improvement highlights
the benefit of adopting a powerful text encoder, which helps
to gain a deeper understanding of situation descriptions and
questions through its strong semantic understanding at the
sentence level, significantly improving the model’s perfor-
mance in 3D QA tasks.
Inference Speed Analysis. We conducted an inference
speed analysis by measuring the average processing time



Method Pre-trained LLMs-based Extra dataset ScanQA SQA3D
LM4Vision [11] ×

√
× - / - 48.1

PQ3D [17] × ×
√

26.1 / 20.0 47.1
GPS [7]

√
×

√
25.0 / 23.5 49.9

LEO [6]
√ √ √

- / - 50.0
DSPNet (Ours) × × × 26.5 / 23.8 50.4

Table 1. The QA accuracy (EM@1) on the “test w/ object” / “test w/o object” split of ScanQA and the test split of SQA3D.

Method EM@1 EM@10

3D-VisTA [16] 49.3 88.6
DSPNet (Ours) 52.0 90.5

Table 2. The question answering accuracy on the validation split
of “3DQA” dataset.

per sample for different settings of the number of image
views. The results indicate that processing time per sample
scales with the number of image views, increasing from 117
ms for 10 views to 171 ms for 15 views and 217 ms for
20 views. These results demonstrate the significant impact
of the number of image views on inference time, highlight-
ing the importance of optimizing scene understanding with
fewer multi-view images, which is a promising direction for
future research.

Encoder ScanQA SQA3D

VoteNet [13] 22.65 49.84
PointNet++ [12] 23.47 50.36

Table 3. Ablation study of different 3D encoders. Conducted on
the validation split of the ScanQA dataset and the test split of the
SQA3D dataset, using EM@1 as the metric.

Encoder ScanQA SQA3D

ViT [5] 22.46 49.39
BEiT [2] 22.63 49.87
Swin Transformer [9] 23.47 50.36

Table 4. Ablation study of different image encoders. Conducted
on the validation split of the ScanQA dataset and the test split of
the SQA3D dataset, using EM@1 as the metric.

4. More Qualitative Results.
Qualitative Results of TGMF module. We visualized the
intermediate results of the TGMF module in Fig. 1 to pro-
vide a clearer understanding of its functionality. Specif-
ically, we showed the image that exhibits the highest
context-specific importance weights. From the results, we

Encoder ScanQA SQA3D

BERT [4] 22.57 48.68
RoBERTa [8] 23.22 49.47
SBERT [14] 23.47 50.36

Table 5. Ablation study of different text encoders. Conducted on
the validation split of the ScanQA dataset and the test split of the
SQA3D dataset, using EM@1 as the metric.

can see that our TGMF module performs its intended func-
tion well.
Qualitative Results of our model. Additional qualitative
results demonstrating the performance of our model are
provided in Fig. 2 and Fig. 3. These results illustrate our
model’s ability to handle a diverse range of tasks, includ-
ing querying the locations of objects, identifying charac-
teristics and states of specific objects, counting the number
of objects within a scene, and responding to yes/no ques-
tions that require commonsense reasoning. From these re-
sults, we observe that our method remains robust in com-
plex scenes, despite the varied shapes of the objects in-
volved in the reasoning process, including objects with flat
shapes (e.g., whiteboard, TV, clock) and even objects with
flexible shapes (e.g., curtain, towel, jacket).

Q1: The black tv is hung above 
what color night stand? A1: brownScene_id: scene0046_00 Q2: What is hanging between the 

sink and the toilet? A2: towel
Q1: The black tv is hung above 
what color night stand? A1: brownScene_id: scene0046_00 Q2: What is hanging between the 

sink and the toilet? A2: towel

Q1: What does the TV rest upon? 
A1: cabinetScene_id: scene0389_00 Q2: What shape is the radiator? 

A2: rectangular

Figure 1. The TGMF module dynamically prioritizes different
views according to question context within the same scene.

5. Future Work
Adapting to Dynamic Environments. In future develop-
ments of DSPNet, we plan to extend the model’s function-
ality in dynamic environments where changes occur in real-



Q: What is on the left side of 
the window?

A: curtain

Q: The black tv is hung above 
what color night stand?

A: brown

Q: What does the TV rest 
upon?

A: cabinet

Q: Where is the blue bin 
located?

A: under desk

Q: What color are the sofa 
chairs?

A: blue

Q: What color is the table in 
the middle of the room?

A: brown

Q: How many monitors are on 
the table?

A: 3

Q: What is hanging next to the 
shower curtain?

A: towel

Figure 2. We present more qualitative results on ScanQA dataset.

A: right A: one A: right A: red

S: I am sitting on a chair under 
the TV facing the table with 
another chair on my left. 
Q: Which direction should I go 
if I want to write on a 
whiteboard?

S: I am opening the doors. 

Q: How many windows are on 
my left?

S: I am standing and the red 
backpack is on my right side and 
I am facing wall across the 
room.
Q: Is the table to my left or 
right?

S: I am sitting on the chair with 
a jacket while facing the 
breakfast bar.

Q: What color is the chair to my 
right?

A: down A: yes A: clock A: square

S: I am facing a toilet. There is a 
door behind me. 

Q: Is the toilet seat covered up 
or down in front of me?

S: I am sitting on sofa chair and 
looking at the bed closest to the 
window. 

Q: Can I reach the backpack?

S: I am facing the window with 
a table in front of me, and a 
chair on my left.
Q: What is mounted on the wall 
that you can use to tell the time 
to my right?

S: I am standing in between the 
toilet on my right and the sink 
on my left.

Q: What shape is the sink to my 
left?

Figure 3. We present more qualitative results on SQA3D dataset.



time. This improvement requires evolving our framework
to accommodate real-time data acquisition and processing,
reducing the dependency on pre-scanned point clouds and
pre-captured multi-view images. Such advancements will
involve integrating adaptive streaming algorithms that can
handle continuous input from moving cameras and sensors.
Multi-modal Alignment. Further, we intend to enhance
DSPNet’s ability to perceive and reason within 3D scenes
comprehensively through multi-modal integration. We will
investigate the alignment of pre-training across 3D scenes,
multi-view images, and text related to scenes. This ef-
fort will focus on developing a comprehensive multi-modal
pre-training approach that utilizes the inherent relationships
among these modalities. By applying strategies like con-
trastive learning and cross-modal distillation, we aim to im-
prove the semantic consistency and contextual understand-
ing across visual and textual data.
Integration with Large Models. In this paper, we haven’t
adopt large models due to the limited size of available 3D
QA datasets, which restricts the effective training and gen-
eralization capabilities of such models. Large models usu-
ally require large-scale datasets to avoid overfitting and
fully utilize their capacity. In addition, the computational
limitations of current devices make it challenging to deploy
large models. However, with the improvement of comput-
ing power of modern hardware and the emergence of larger
3D QA datasets in the future, exploring large 3D QA mod-
els with dual-vision becomes a promising direction. Our
future research will focus on developing scalable architec-
tures to effectively utilize expanded datasets and enhance
the model’s ability to comprehensively perceive and reason
in 3D scenes.
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