
Appendix

Overview

The supplementary material presents the following sections
to strengthen the main manuscript:

— Sec. A shows more implementation details.
— Sec. B shows more details about comparison meth-

ods.
— Sec. C shows the complexity comparisons.
— Sec. D shows the influence of input resolution.
— Sec. E shows the influence of ViT architecture.
— Sec. F shows the influence of the weight of loss

functions.
— Sec. G shows the super-multi-class anomaly detec-

tion.
— Sec. H shows per-class multi-class anomaly detec-

tion results.
— Sec. I shows more few-shot anomaly detection re-

sults.
— Sec. J shows per-class single-class anomaly detec-

tion results.
— Sec. K shows more zero-shot anomaly detection re-

sults.
— Sec. L shows more visualized anomaly localization

results
— Sec. M shows a more detailed analysis of the limi-

tations
— Sec. N shows a comparison of INP with handcrafted

aggregated prototypes
— Sec. O shows a comparison of INP with MuSc
— Sec. P shows more INP visualization results

A. More implementation details

Building on previous work [7], we adopt a group-to-group
supervision approach by summing the features of the lay-
ers of interest to form distinct groups. In our study, we
define two groups: the features from layers 3 to 6 of ViT-
Base [6] constitute one group, while those from layers 7
to 10 form another. We construct the anomaly detection
map using the regional cosine distance [5] between the fea-
ture groups of the encoder and decoder, computing the av-
erage of the top 1% of this map as the image-level anomaly
score. In the few-shot setting, we employ data augmenta-
tion techniques similar to RegAD [10]. Additionally, it is
worth noting that in our few-shot experiments on the Real-
IAD [16] dataset, the term “shot” refers to the number of
images rather than the number of views. The experimen-
tal code is implemented in Python 3.8 and PyTorch 2.0.0
(CUDA 11.8) and runs on an NVIDIA GeForce RTX 4090
GPU (24GB).

Table S1. Comparison of computational efficiency among
SOTA methods. mAD represents the average value of seven met-
rics on the Real-IAD [16] dataset. The INP-Former-S denotes
a model variant based on the ViT-Small architecture, while INP-
Former-S∗ refers to a model variant using the ViT-Small architex-
ture with an image size of R2562-C2242.

Method Params(M) FLOPs(G) mAD

RD4AD [5] 150.6 38.9 68.6
UniAD [17] 24.5 3.6 67.5

SimpleNet [14] 72.8 16.1 42.3
DeSTSeg [18] 35.2 122.7 64.2

DiAD [9] 1331.3 451.5 52.6
MambaAD [8] 25.7 8.3 72.7
Dinomaly [7] 132.8 104.7 77.0

INP-Former 139.8 98.0 78.8
INP-Former-S 35.1 24.6 78.4
INP-Former-S∗ 35.1 8.1 73.8

Figure S1. Influence of the weight of loss function λ on model
performance for the MVTec-AD [2] dataset. Pixel- level AP and
F1 max use the right vertical axis, while the other metrics share the
left vertical axis.

B. More details about comparison methods

The detailed information of the other compared methods in
the experiment are as follows. Unless otherwise indicated,
we utilize the performance metrics as reported in the orig-
inal paper. In the few-shot setting on the Real-IAD [16]
dataset, SPADE [3] 1, PaDiM [4] 2, PatchCore [15] 3, Win-
CLIP [11] 4, and PromptAD [13] 5 are run with the publicly

1https://github.com/byungjae89/SPADE-pytorch
2https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-

Localization-master
3https://github.com/hcw-00/PatchCore anomaly detection
4https://github.com/zqhang/Accurate-WinCLIP-pytorch
5https://github.com/FuNz-0/PromptAD

https://github.com/byungjae89/SPADE-pytorch
https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master
https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master
https://github.com/hcw-00/PatchCore_anomaly_detection
https://github.com/zqhang/Accurate-WinCLIP-pytorch
https://github.com/FuNz-0/PromptAD


Table S2. Influence of the Image Size on model performance for the MVTec-AD [2] dataset. R2562-C2242 denotes resizing the image to
256×256, followed by a center crop to 224×224.

Metric → Image-level Pixel-level Efficiency

Image Size ↓ AUROC AP F1 max AUROC AP F1 max AUPRO Params(M) FLOPs(G)

R2242 99.3 99.8 98.8 98.2 60.8 61.9 93.6 139.8 32.3
R2562-C2242 99.3 99.8 99.0 98.1 64.2 64.4 92.7 139.8 32.3

R2802 99.5 99.9 99.2 98.4 64.9 64.8 94.6 139.8 50.2
R3202-C2802 99.6 99.9 99.1 98.3 67.5 67.1 93.9 139.8 50.2

R3922 99.6 99.8 99.1 98.6 69.1 68.5 95.6 139.8 98.0
R4482-C3922 99.7 99.9 99.2 98.5 71.0 69.7 94.9 139.8 98.0

Table S3. Influence of the Image Size on the performance of other
methods on MVTec-AD [2] dataset.

Method Input Size Image-level Pixel-level

RD4AD [5]
R2562 94.6/96.5/96.1 96.1/48.6/53.8/91.1
R3842 91.9/96.2/95.0 94.0/47.8/50.9/88.6

△ -2.7/0.3/1.1 -2.1/0.8/2.9/2.5

SimpleNet [14]
R2562 95.3/98.4/95.8 96.9/45.9/49.7/86.5
R3842 86.1/93.6/90.9 89.5/36.0/40.5/76.4

△ -9.2/4.8/4.9 -7.4/9.9/9.2/10.1

PatchCore [15]
R2562 97.2/99.1/97.2 97.9/53.8/56.3/91.3
R3842 98.9/99.6/98.3 98.0/58.4/59.8/93.2

△ +1.7/0.5/1.1 +0.1/4.6/3.5/1.9

available implementations.
RD4AD [5]: RD4AD is a robust baseline model for

anomaly detection methods based on knowledge distillation
and has been widely adopted by subsequent researchers.

UniAD [17]: UniAD is a baseline model for multi-class
anomaly detection, which employs a Transformer-based
non-identical mapping reconstruction model to enable com-
plex multi-class semantic learning. Similarly,

SimpleNet [14]: SimpleNet is an efficient and user-
friendly network for anomaly detection and localization,
which relies on a binary discriminator of adapted features
to distinguish between anomalies and normal samples.

DeSTSeg [18]: DeSTSeg is an improved student-teacher
framework for visual anomaly detection, integrating a de-
noising encoder-decoder and a segmentation network.

DiAD [9]: DiAD is a diffusion-based framework for
multi-class anomaly detection, which incorporates the Se-
mantic Guided network to recover anomalies while preserv-
ing semantics.

MambaAD [8]: MambaAD is a recently developed
multi-class anomaly detection model with a Mamba de-
coder and locality-enhanced state space module, which cap-
tures long-range and local information effectively.

Dinomaly [7]: Dinomaly is a streamlined reverse distil-
lation framework that employs linear attention mechanisms
and loose reconstruction to achieve substantial performance

gains.
SPADE [3]: SPADE is an early anomaly detection

method that aligns anomalous images with normal images
using a multi-resolution feature pyramid.

PaDiM [4]: PaDiM utilizes the pre-trained CNN features
of normal samples to fit multivariate Gaussian distributions,
which is a widely used baseline model.

Patchcore [15]: PatchCore is an important milestone ap-
proach. It utilizes a memory bank of core set sampled nom-
inal patch features.

WinCLIP [11]: WinCLIP introduces the first VLM-
driven approach for zero-shot anomaly detection. It meticu-
lously crafts a comprehensive suite of custom text prompts,
optimized for identifying anomalies, and integrates a win-
dow scaling technique to achieve anomaly segmentation.

PromptAD [13]: PromptAD improves few-shot anomaly
detection by automating prompt learning for one-class
settings. It employs semantic concatenation to generate
anomaly prompts and introduces an explicit margin.

C. Complexity Comparisons
Tab. S1 compares the proposed INP-Former with seven
SOTA methods in terms of model size and computational
complexity. Notably, our method’s FLOPs are lower than
those of DeSTSeg, DiAD, and Dinomaly, while its perfor-
mance significantly exceeds theirs. Although our method
has a larger parameter size and FLOPs than SimpleNet,
UniAD, and MambaAD, it demonstrates a substantial im-
provement in detection performance. Furthermore, our ap-
proach is applicable to multi-class, few-shot, and single-
class anomaly detection settings. It is noteworthy that we
also report the efficiency and performance of two additional
variants of INP-Former (INP-Former-S and INP-Former-
S∗). INP-Former-S achieves a significant reduction in both
parameters and FLOPs, with only a minor performance de-
cline of 0.4↓. Even more remarkably, INP-Former-S*
not only reduces FLOPs compared to MambaAD but
also outperforms MambaAD 1.1↑ in terms of perfor-
mance. Overall, our method shows significant potential in
industrial applications.



Table S4. Influence of the ViT Architecture on model performance for the MVTec-AD [2] dataset.

Metric → Image-level Pixel-level Efficiency

Architecture ↓ AUROC AP F1 max AUROC AP F1 max AUPRO Params(M) FLOPs(G)

ViT-Small 99.2 99.7 98.6 98.2 69.1 68.5 94.3 35.1 24.6
ViT-Base 99.7 99.9 99.2 98.5 71.0 69.7 94.9 139.8 98.0
ViT-Large 99.8 99.9 99.4 98.6 72.1 70.5 95.6 361.7 263.4

Table S5. Super-multi-class anomaly detection performance on different AD datasets. ∆ represents the performance change of INP-
Former in the super-multi-class setting relative to the multi-class setting.

Dataset → MVTec-AD [2] VisA [19] Real-IAD [16]

Metric → Image-level(I-AUROC/I-AP/I-F1 max) Pixel-level(P-AUROC/P-AP/P-F1 max/AUPRO)

Setting ↓ Image-level Pixel-level Image-level Pixel-level Image-level Pixel-level

Multi-Class 99.7/99.9/99.2 98.5/71.0/69.7/94.9 98.9/99.0/96.6 98.9/51.2/54.7/94.4 90.5/88.1/81.5 99.0/47.5/50.3/95.0
Super-Multi-Class 99.5/99.8/98.9 98.1/69.2/68.1/94.2 97.3/97.8/94.1 98.4/51.4/54.7/92.4 89.8/87.4/80.5 98.9/45.2/48.6/94.4

∆ 0.2↓/0.1↓/0.3↓ 0.4↓/1.8↓/1.6↓/0.7↓ 1.6↓/1.2↓/2.5↓ 0.5↓/0.2↑/0.0/2.0↓ 0.7↓/0.7↓/1.0↓ 0.1↓/2.3↓/1.7↓/0.6↓

D. Influence of Input Resolution

As shown in Tab. S2, we conducted an ablation study to
evaluate the impact of input resolution on model perfor-
mance. The results demonstrate that our method is robust to
variations in image size for image-level anomaly detection.
However, the image size has a slight effect on pixel-level
anomaly localization performance. This is attributed to the
patch size of 14 in the ViT, which results in smaller feature
maps when the input image is reduced in size, leading to
performance degradation. Therefore, in our study, we de-
fault to resizing the image to 448×448 and then applying a
center crop to 392×392. Additionally, it is noteworthy that,
under the R2562-C2242 setting, our method still achieves
superior detection and localization performance compared
to previous SOTA methods. Additionally, we analyze the
effect of input size on the performance of other methods.
As shown in Tab. S3, we observe that not all models show
improved performance with larger input sizes. For instance,
when the input size is increased from 256 to 384, the per-
formance of RD4AD and SimpleNet drops significantly. In
contrast, our method consistently demonstrates superior de-
tection performance across various input sizes, further vali-
dating the effectiveness of our approach.

E. Influence of ViT Architectures.

Tab. S4 illustrates the effect of the ViT architecture on
model performance. Our method demonstrates strong de-
tection performance even with ViT-Small, with perfor-
mance further improving as the ViT model size increases.
Although ViT-Large achieves the best performance, its high
FLOPs and parameter count make it less practical. There-
fore, we default to using ViT-Base in this study.

Figure S2. Limitation of proposed method in detecting logi-
cal anomalies similar to the background. From left to right:
Normal Image, Input Anomaly, Ground Truth, Distance Map, and
Predicted Anomaly Map.

F. Influence of the Weight of Loss Functions

Fig. S1 illustrates the effect of the weight of loss func-
tion on model performance in the MVTec-AD [2] dataset.
Our method shows strong robustness to changes in weight
of loss function at the image level. However, pixel-level
performance initially increases and then decreases as the λ
grows. This trend occurs because, when λ is too low, the
INP Extractor may fail to consistently capture normal pat-
terns, potentially including some anomalous information.
Conversely, when λ is too high, the model focuses exces-
sively on updating the INP Extractor, overlooking updates
to the INP-Guided Decoder, which leads to insufficient de-
tail in reconstructed features. Based on these observations,
we set λ to 0.2 in our study.



Table S6. Few-shot (1-shot) anomaly detection performance on different AD datasets. The best in bold, the second-highest is underlined.
† indicates the results we reproduced using publicly available code.

Dataset → MVTec-AD [2] VisA [19] Real-IAD [16]

Metric → Image-level(I-AUROC/I-AP/I-F1 max) Pixel-level(P-AUROC/P-AP/P-F1 max/AUPRO)

Method ↓ Image-level Pixel-level Image-level Pixel-level Image-level Pixel-level

SPADE [3] 82.9/91.7/91.1 92.0/-/44.5/85.7 79.5/82.0/80.7 95.6/-/35.5/84.1 51.2†/45.6†/61.4† 59.5†/0.2†/0.5†/19.3†

PaDiM [4] 78.9/89.3/89.2 91.3/-/43.7/78.2 62.8/68.3/75.3 89.9/-/17.4/64.3 52.9†/47.4†/62.0† 84.9†/0.8†/2.3†/52.7†

PatchCore [15] 86.3/93.8/92.0 93.3/-/53.0/82.3 79.9/82.8/81.7 95.4/-/38.0/80.5 59.3†/55.8†/62.3† 89.6†/6.6†/12.3†/60.5†

WinCLIP [11] 93.1/96.5/93.7 95.2/-/55.9/87.1 83.8/85.1/83.1 96.4/-/41.3/85.1 69.4†/56.8†/58.8† 91.9†/9.0†/15.3†/71.0†

PromptAD [13] 94.6/-/- 95.9/-/-/87.9 86.9/-/- 96.7/-/-/85.8 52.2†/41.6†/52.2† 84.9†/7.6†/14.6†/58.4†

INP-Former 96.6/98.2/96.4 97.0/64.2/64.0/92.6 91.4/92.2/88.6 96.3/42.5/47.3/89.5 67.5/63.1/66.1 94.9/20.0/25.8/81.8

Table S7. Few-shot (2-shot) anomaly detection performance on different AD datasets. The best in bold, the second-highest is underlined.
† indicates the results we reproduced using publicly available code.

Dataset → MVTec-AD [2] VisA [19] Real-IAD [16]

Metric → Image-level(I-AUROC/I-AP/I-F1 max) Pixel-level(P-AUROC/P-AP/P-F1 max/AUPRO)

Method ↓ Image-level Pixel-level Image-level Pixel-level Image-level Pixel-level

SPADE [3] 81.0/90.6/90.3 91.2/-/42.4/83.9 81.7/83.4/82.1 96.2/-/40.5/85.7 50.9†/45.5†/61.2† 59.5†/0.2†/0.5†/19.2†

PaDiM [4] 76.6/88.1/88.2 89.3/-/40.2/73.3 67.4/71.6/75.7 92.0/-/21.1/70.1 55.9†/49.6†/62.9† 88.5†/1.5†/3.8†/61.6†

PatchCore [15] 83.4/92.2/90.5 92.0/-/58.4/79.7 81.6/84.8/82.5 96.1/-/41.0/82.6 63.3†/59.7†/64.2† 92.0†/9.4†/14.1†/66.1†

WinCLIP [11] 94.4/97.0/94.4 96.0/-/58.4/88.4 84.6/85.8/83.0 96.8/-/43.5/86.2 70.9†/58.7†/60.3† 93.2†/11.7†/18.3†/74.7†

PromptAD [13] 95.7/-/- 96.2/-/-/88.5 88.3/-/- 97.1/-/-/85.8 57.7†/41.1†/52.9† 86.4†/8.5†/16.2†/61.0†

INP-Former 97.0/98.2/96.7 97.2/66.0/65.6/93.1 94.6/94.9/90.8 97.2/45.0/50.4/91.8 70.6/66.1/69.3 96.0/23.8/28.3/83.8

G. Super-Multi-Class Anomaly Detection
Tab. S5 presents the super-multi-class anomaly detection
performance of INP-Former, i.e., training together with
MVTec-AD, VisA, and Real-IAD. Compared to the multi-
class anomaly detection setting, the performance of INP-
Former in the super-multi-class setting only slightly de-
clines. This demonstrates that our method can utilize a uni-
fied model to detect a broader range of products, which can
significantly reduce memory consumption in industrial ap-
plications.

H. Per-Class Multi-Class Anomaly Detection
Results

In this section, we present the performance of each class on
the MVTec-AD [2], VisA [19], and Real-IAD [16] datasets
for multi-class anomaly detection. The performance of
the comparison methods is derived from MambaAD [8]
and Dinomaly [7]. Tab. S12 and Tab. S13 provide the
results for image-level anomaly detection and pixel-level
anomaly localization on the MVTec-AD dataset, respec-
tively. Tab. S14 and Tab. S15 further present the corre-
sponding results on the VisA dataset. Tab. S16 and Tab. S17
display the results for image-level anomaly detection and
pixel-level anomaly localization on the Real-IAD dataset.
These results convincingly demonstrate the superiority of

our proposed method.

I. More Few-shot Anomaly Detection Results
Tab. S6 and Tab. S7 show the performance comparison
between our method and existing methods across three
datasets under 1-shot and 2-shot anomaly detection settings,
respectively. Our method achieves state-of-the-art or com-
petitive results across all three datasets, highlighting its su-
perior effectiveness.

J. Per-Class Single-Class Anomaly Detection
Results

To support future research, we report the per-class perfor-
mance of INP-Former in the single-class anomaly detection
setting on MVTec-AD [2], VisA [19], and Real-IAD [16]
datasets. in Tab. S9, Tab. S10, and Tab. S11, respectively.

K. More Zero-shot Anomaly Detection Results

Tab. S8 compares the zero-shot anomaly detection per-
formance of our method with WinCLIP [11], a method
specifically designed for zero-shot anomaly detection. No-
tably, we utilize INP-Former to extract INPs for images
from unseen classes and then directly compare all tokens
to these INPs for zero-shot anomaly detection. Although



Table S8. Zero-shot anomaly detection performance on different AD datasets. The best in bold.

Dataset → MVTec-AD [2] VisA [19]

Metric → Image-level(I-AUROC/I-AP/I-F1 max) Pixel-level(P-AUROC/P-AP/P-F1 max/AUPRO)

Method ↓ Image-level Pixel-level Image-level Pixel-level

WinCLIP [11] 91.8/96.5/92.9 85.1/-/31.7/64.6 78.1/81.2/79.0 79.6/-/14.8/56.8
INP-Former 80.8/90.7/89.1 88.0/36.1/39.5/76.9 67.5/71.6/75.0 88.7/7.8/11.8/67.2

our method is not designed for zero-shot anomaly detection,
it still possesses some efficacy for this task, with 88.0 and
88.7 pixel-level AUROCs on MVTec-AD and VisA, respec-
tively. In terms of image-level performance, our method
performs weaker than the existing specified method. We
believe incorporating INPs with other specified designs can
bring better zero-shot anomaly detection performance.

L. More qualitative results
Fig. S3, Fig. S4, and Fig. S5 display the predicted anomaly
maps of our method on the MVTec-AD [2], VisA [19], and
Real-IAD [16] datasets for multi-class anomaly detection.
These results clearly indicate that our approach can accu-
rately localize anomalous regions for a wide range of cate-
gories.

M. More detailed analysis of the limitations
Fig. S2 illustrates two examples of logical anomaly detec-
tion using our method. Interestingly, the misplaced logical
anomaly in Cable is successfully detected, while the mis-
placed anomaly in Transistor is completely missed. We hy-
pothesize that this is due to the significant difference be-
tween the misplaced anomaly and the background in Ca-
ble, whereas the misplaced anomaly in Transistor closely
resembles the background. As a result, the INP Extractor
mistakenly extracts the misplaced anomaly in Transistor as
INPs, leading to a missed detection. This highlights a lim-
itation of our method when dealing with logical anomalies
that are similar to the background. In future work, we aim
to combine pre-stored prototypes with INPs to address this
issue. Pre-stored prototypes capture comprehensive seman-
tic information, while INPs exhibit strong alignment. The
integration of both is expected to improve the model’s per-
formance in detecting logical anomalies that resemble the
background.

N. Comparison of INP with handcrafted aggre-
gated prototypes

Although the concept in Reference [1] is similar to our pro-
posed INP, we wish to emphasize that our method is funda-
mentally distinct. Reference [1] manually aggregates fea-

tures within a single image as prototypes, and its scope is
limited to zero-shot texture anomaly detection. In contrast,
we introduce a learnable INP extractor that extracts normal
features with adaptable shapes as INPs. This enables our
method to be applied not only to textures but also to ob-
jects. Additionally, we integrate the INP into a reconstruc-
tion framework by proposing an INP-guided decoder, which
not only reduces the computational cost of self-attention but
also achieves superior detection performance across multi-
ple settings.

O. Comparision of INP with MuSc
It may seem unusual that MuSc [12] performs better in zero-
shot settings compared to our INP-Former in few-shot set-
tings. However, this difference stems from the distinct se-
tups of the two methods. MuSc is specifically designed for
zero-shot detection and relies on a large number of test im-
ages for mutual scoring. In contrast, our INP-Former only
requires a single image during the testing phase, making
it adaptable to various settings. As such, comparing our
method with MuSc is not a fair comparison.

P. More visualizations of INPs
Fig. S6 presents the cross-attention maps between INPs
and image patches. This clearly demonstrates that our
INPs are able to capture semantic information from var-
ious regions, including object regions, object boundaries,
and background areas.
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Table S9. Per-Class Performance of the Proposed INP-Former on the MVTec-AD [2] Dataset for Single-Class Anomaly Detection

Metric → Image-level Pixel-level

Category ↓ I-AUROC I-AP I-F1 max P-AUROC P-AP P-F1 max AUPRO

Bottle 100 100 100 99.1 88.9 82.4 97.2
Cable 100 100 100 98.8 78.9 75.0 95.2

Capsule 98.6 99.7 98.2 98.5 60.1 57.5 97.7
Hazelnut 100 100 100 99.5 82.8 78.4 97.0
Metal Nut 100 100 100 97.1 81.1 86.3 94.3

Pill 99.2 99.9 98.6 96.0 66.8 66.9 97.2
Screw 98.0 99.3 96.7 99.6 63.8 59.9 98.3

Toothbrush 100 100 100 99.1 57.4 67.4 95.8
Transistor 99.9 99.8 98.8 95.6 66.7 63.7 86.4

Zipper 100 100 100 98.1 71.6 68.3 94.6
Carpet 99.9 99.9 99.4 99.4 75.7 72.6 98.0
Grid 100 100 100 99.5 61.6 62.0 97.6

Leather 100 100 100 99.3 52.2 53.3 98.4
Tile 100 100 100 97.8 73.0 75.7 88.9

Wood 99.8 99.9 99.2 97.4 72.1 68.4 94.1

Mean 99.7 99.9 99.4 98.3 70.2 69.2 95.4

Table S10. Per-Class Performance of the Proposed INP-Former on the VisA [19] Dataset for Single-Class Anomaly Detection

Metric → Image-level Pixel-level

Category ↓ I-AUROC I-AP I-F1 max P-AUROC P-AP P-F1 max AUPRO

pcb1 98.6 98.5 95.0 99.6 86.7 78.5 95.1
pcb2 98.0 96.6 96.0 98.8 40.0 40.3 91.1
pcb3 99.3 99.4 97.0 99.0 28.4 38.5 93.1
pcb4 100 100 99.0 98.6 51.3 51.6 93.2

macaroni1 97.2 97.3 91.0 99.4 33.1 40.4 94.8
macaroni2 95.0 94.9 89.0 99.7 26.7 36.2 98.4
capsules 99.0 99.3 97.6 99.5 66.2 65.5 98.2
candle 98.8 98.8 94.7 99.4 46.2 50.2 95.7
cashew 98.5 99.3 97.0 93.8 59.9 60.6 89.7

chewinggum 99.4 99.7 96.9 98.8 58.1 63.5 87.1
fryum 99.3 99.7 98.0 95.8 43.5 48.8 93.1

pipe fryum 99.2 99.6 97.5 98.5 49.8 56.5 95.6

Mean 98.5 98.6 95.7 98.4 49.2 52.6 93.8



Table S11. Per-Class Performance of the Proposed INP-Former on the Real-IAD [16] Dataset for Single-Class Anomaly Detection

Metric → Image-level Pixel-level

Category ↓ I-AUROC I-AP I-F1 max P-AUROC P-AP P-F1 max AUPRO

audiojack 92.2 88.2 78.4 99.6 53.3 55.2 97.0
bottle cap 94.9 94.1 85.0 99.7 40.2 40.4 98.4

button battery 89.9 91.4 84.4 99.2 51.9 56.3 93.8
end cap 89.5 89.1 85.5 99.3 23.9 34.9 97.0
eraser 93.9 91.9 83.1 99.8 48.2 50.7 98.3

fire hood 88.4 81.7 73.3 99.6 47.2 49.6 96.5
mint 82.4 82.1 73.7 98.2 29.2 38.7 86.4

mounts 87.8 75.8 77.8 99.6 43.3 45.2 95.8
pcb 93.9 96.4 89.2 99.4 59.2 59.5 96.4

phone battery 94.6 93.0 85.3 99.7 67.8 61.9 97.9
plastic nut 94.4 90.3 83.2 99.8 48.3 48.2 98.5

plastic plug 91.2 87.9 77.5 99.3 34.4 39.9 96.1
porcelain doll 86.4 75.4 70.9 99.0 29.7 37.1 94.9

regulator 87.5 78.6 69.2 99.3 44.5 49.2 95.4
rolled strip base 99.5 99.7 98.3 99.8 51.7 54.7 98.9

sim card set 97.4 97.7 92.1 99.3 59.3 58.9 93.9
switch 98.4 98.7 94.5 99.2 68.7 65.6 97.7
tape 98.2 97.1 91.0 99.8 55.4 56.3 99.1

terminalblock 97.4 98 92.7 99.7 55.8 56.9 99.1
toothbrush 86.5 86.4 81.8 96.2 31.6 40.1 89

toy 89.3 90.9 85.6 96.9 28.1 35.9 94
toy brick 82.5 78.9 70.8 98.1 41.5 45.6 84.7

transistor1 97.9 98.5 93.9 99.5 54.8 54.6 97.7
usb 95.5 95.0 88.8 99.5 48.6 51.5 98.2

usb adaptor 87.1 81.7 74.0 99.3 33.6 39.7 95.1
u block 93.8 90.9 81.2 99.6 53.3 58.1 97.3
vcpill 93.7 93.4 84.7 99.2 71.2 68.7 94.5

wooden beads 91.6 90.6 82.3 99.3 49.5 52.9 93.7
woodstick 87.4 78.5 70.9 99.4 57 57.7 94.2

zipper 98.4 99.0 95.1 99.1 61.5 64.0 97.1

Mean 92.1 89.7 83.1 99.2 48.1 50.9 95.6



Table S12. Per-Class Results on the MVTec-AD [2] Dataset for Multi-Class Anomaly Detection with AUROC/AP/F1 max metrics.

Method → RD4AD [5] UniAD [17] SimpleNet [14] DeSTSeg [18] DiAD [9] MambaAD [8] Dinomaly [7] INP-Former
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 NeurIPS’24 Arxiv’24 Ours

Bottle 99.6/99.9/98.4 99.7/100/100 100/100/100 98.7/99.6/96.8 99.7/96.5/91.8 100/100/100 100/100/100 100/100/100
Cable 84.1/89.5/82.5 95.2/95.9/88.0 97.5/98.5/94.7 89.5/94.6/85.9 94.8/98.8/95.2 98.8/99.2/95.7 100/100/100 100/100/100

Capsule 94.1/96.9/96.9 86.9/97.8/94.4 90.7/97.9/93.5 82.8/95.9/92.6 89.0/97.5/95.5 94.4/98.7/94.9 97.9/99.5/97.7 99.0/99.8/98.6
Hazelnut 60.8/69.8/86.4 99.8/100/99.3 99.9/99.9/99.3 98.8/99.2/98.6 99.5/99.7/97.3 100/100/100 100/100/100 100/100/100
Metal Nut 100/100/99.5 99.2/99.9/99.5 96.9/99.3/96.1 92.9/98.4/92.2 99.1/96.0/91.6 99.9/100/99.5 100/100/100 100/100/100

Pill 97.5/99.6/96.8 93.7/98.7/95.7 88.2/97.7/92.5 77.1/94.4/91.7 95.7/98.5/94.5 97.0/99.5/96.2 99.1/99.9/98.3 99.1/99.8/97.9
Screw 97.7/99.3/95.8 87.5/96.5/89.0 76.7/90.6/87.7 69.9/88.4/85.4 90.7/99.7/97.9 94.7/97.9/94.0 98.4/99.5/96.1 97.5/99.2/94.9

Toothbrush 97.2/99.0/94.7 94.2/97.4/95.2 89.7/95.7/92.3 71.7/89.3/84.5 99.7/99.9/99.2 98.3/99.3/98.4 100/100/100 100/100/100
Transistor 94.2/95.2/90.0 99.8/98.0/93.8 99.2/98.7/97.6 78.2/79.5/68.8 99.8/99.6/97.4 100/100/100 99.0/98.0/96.4 99.7/99.5/98.8

Zipper 99.5/99.9/99.2 95.8/99.5/97.1 99.0/99.7/98.3 88.4/96.3/93.1 95.1/99.1/94.4 99.3/99.8/97.5 100/100/100 100/100/100
Carpet 98.5/99.6/97.2 99.8/99.9/99.4 95.7/98.7/93.2 95.9/98.8/94.9 99.4/99.9/98.3 99.8/99.9/99.4 99.8/100/98.9 99.9/100/99.4
Grid 98.0/99.4/96.5 98.2/99.5/97.3 97.6/99.2/96.4 97.9/99.2/96.6 98.5/99.8/97.7 100/100/100 99.9/100/99.1 99.9/100/99.1

Leather 100/100/100 100/100/100 100/100/100 99.2/99.8/98.9 99.8/99.7/97.6 100/100/100 100/100/100 100/100/100
Tile 98.3/99.3/96.4 99.3/99.8/98.2 99.3/99.8/98.8 97.0/98.9/95.3 96.8/99.9/98.4 98.2/99.3/95.4 100/100/100 100/100/100

Wood 99.2/99.8/98.3 98.6/99.6/96.6 98.4/99.5/96.7 99.9/100/99.2 99.7/100/100 98.8/99.6/96.6 99.8/99.9/99.2 99.9/100/99.2

Mean 94.6/96.5/95.2 96.5/98.8/96.2 95.3/98.4/95.8 89.2/95.5/91.6 97.2/99.0/96.5 98.6/99.6/97.8 99.6/99.8/99.0 99.7/99.9/99.2

Table S13. Per-Class Results on the MVTec-AD [2] Dataset for Multi-Class Anomaly Localization with AUROC/AP/F1 max/AUPRO
metrics.

Method → RD4AD [5] UniAD [17] SimpleNet [14] DeSTSeg [18] DiAD [9] MambaAD [8] Dinomaly [7] INP-Former
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 NeurIPS’24 Arxiv’24 Ours

Bottle 97.8/68.2/67.6/94.0 98.1/66.0/69.2/93.1 97.2/53.8/62.4/89.0 93.3/61.7/56.0/67.5 98.4/52.2/54.8/86.6 98.8/79.7/76.7/95.2 99.2/88.6/84.2/96.6 99.1/88.7/83.2/97.1
Cable 85.1/26.3/33.6/75.1 97.3/39.9/45.2/86.1 96.7/42.4/51.2/85.4 89.3/37.5/40.5/49.4 96.8/50.1/57.8/80.5 95.8/42.2/48.1/90.3 98.6/72.0/74.3/94.2 98.8/79.3/75.8/94.4

Capsule 98.8/43.4/50.0/94.8 98.5/42.7/46.5/92.1 98.5/35.4/44.3/84.5 95.8/47.9/48.9/62.1 97.1/42.0/45.3/87.2 98.4/43.9/47.7/92.6 98.7/61.4/60.3/97.2 98.8/60.3/58.5/97.7
Hazelnut 97.9/36.2/51.6/92.7 98.1/55.2/56.8/94.1 98.4/44.6/51.4/87.4 98.2/65.8/61.6/84.5 98.3/79.2/80.4/91.5 99.0/63.6/64.4/95.7 99.4/82.2/76.4/97.0 99.5/81.8/76.9/97.0
Metal Nut 94.8/55.5/66.4/91.9 62.7/14.6/29.2/81.8 98.0/83.1/79.4/85.2 84.2/42.0/22.8/53.0 97.3/30.0/38.3/90.6 96.7/74.5/79.1/93.7 96.9/78.6/86.7/94.9 97.5/81.2/86.6/95.1

Pill 97.5/63.4/65.2/95.8 95.0/44.0/53.9/95.3 96.5/72.4/67.7/81.9 96.2/61.7/41.8/27.9 95.7/46.0/51.4/89.0 97.4/64.0/66.5/95.7 97.8/76.4/71.6/97.3 97.7/76.1/70.3/97.3
Screw 99.4/40.2/44.6/96.8 98.3/28.7/37.6/95.2 96.5/15.9/23.2/84.0 93.8/19.9/25.3/47.3 97.9/60.6/59.6/95.0 99.5/49.8/50.9/97.1 99.6/60.2/59.6/98.3 99.5/61.8/58.6/97.9

Toothbrush 99.0/53.6/58.8/92.0 98.4/34.9/45.7/87.9 98.4/46.9/52.5/87.4 96.2/52.9/58.8/30.9 99.0/78.7/72.8/95.0 99.0/48.5/59.2/91.7 98.9/51.5/62.6/95.3 99.1/58.3/66.6/95.9
Transistor 85.9/42.3/45.2/74.7 97.9/59.5/64.6/93.5 95.8/58.2/56.0/83.2 73.6/38.4/39.2/43.9 95.1/15.6/31.7/90.0 96.5/69.4/67.1/87.0 93.2/59.9/58.5/77.0 94.7/64.0/62.4/79.0

Zipper 98.5/53.9/60.3/94.1 96.8/40.1/49.9/92.6 97.9/53.4/54.6/90.7 97.3/64.7/59.2/66.9 96.2/60.7/60.0/91.6 98.4/60.4/61.7/94.3 99.2/79.5/75.4/97.2 99.0/75.8/72.7/96.4
Carpet 99.0/58.5/60.4/95.1 98.5/49.9/51.1/94.4 97.4/38.7/43.2/90.6 93.6/59.9/58.9/89.3 98.6/42.2/46.4/90.6 99.2/60.0/63.3/96.7 99.3/68.7/71.1/97.6 99.4/72.5/72.4/97.7
Grid 96.5/23.0/28.4/97.0 63.1/10.7/11.9/92.9 96.8/20.5/27.6/88.6 97.0/42.1/46.9/86.8 96.6/66.0/64.1/94.0 99.2/47.4/47.7/97.0 99.4/55.3/57.7/97.2 99.4/58.1/60.1/97.7

Leather 99.3/38.0/45.1/97.4 98.8/32.9/34.4/96.8 98.7/28.5/32.9/92.7 99.5/71.5/66.5/91.1 98.8/56.1/62.3/91.3 99.4/50.3/53.3/98.7 99.4/52.2/55.0/97.6 99.4/56.3/57.4/98.0
Tile 95.3/48.5/60.5/85.8 91.8/42.1/50.6/78.4 95.7/60.5/59.9/90.6 93.0/71.0/66.2/87.1 92.4/65.7/64.1/90.7 93.8/45.1/54.8/80.0 98.1/80.1/75.7/90.5 97.8/76.6/74.4/88.3

Wood 95.3/47.8/51.0/90.0 93.2/37.2/41.5/86.7 91.4/34.8/39.7/76.3 95.9/77.3/71.3/83.4 93.3/43.3/43.5/97.5 94.4/46.2/48.2/91.2 97.6/72.8/68.4/94.0 97.6/74.6/68.9/93.7

Mean 96.1/48.6/53.8/91.1 96.8/43.4/49.5/90.7 96.9/45.9/49.7/86.5 93.1/54.3/50.9/64.8 96.8/52.6/55.5/90.7 97.7/56.3/59.2/93.1 98.4/69.3/69.2/94.8 98.5/71.0/69.7/94.9

Table S14. Per-Class Results on the VisA [19] Dataset for Multi-Class Anomaly Detection with AUROC/AP/F1 max metrics.

Method → RD4AD [5] UniAD [17] SimpleNet [14] DeSTSeg [18] DiAD [9] MambaAD [8] Dinomaly [7] INP-Former
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 NeurIPS’24 Arxiv’24 Ours

pcb1 96.2/95.5/91.9 92.8/92.7/87.8 91.6/91.9/86.0 87.6/83.1/83.7 88.1/88.7/80.7 95.4/93.0/91.6 99.1/99.1/96.6 98.8/98.7/96.1
pcb2 97.8/97.8/94.2 87.8/87.7/83.1 92.4/93.3/84.5 86.5/85.8/82.6 91.4/91.4/84.7 94.2/93.7/89.3 99.3/99.2/97.0 98.8/98.6/97.0
pcb3 96.4/96.2/91.0 78.6/78.6/76.1 89.1/91.1/82.6 93.7/95.1/87.0 86.2/87.6/77.6 93.7/94.1/86.7 98.9/98.9/96.1 99.2/99.2/97.0
pcb4 99.9/99.9/99.0 98.8/98.8/94.3 97.0/97.0/93.5 97.8/97.8/92.7 99.6/99.5/97.0 99.9/99.9/98.5 99.8/99.8/98.0 99.9/99.9/99.0

macaroni1 75.9/1.5/76.8 79.9/79.8/72.7 85.9/82.5/73.1 76.6/69.0/71.0 85.7/85.2/78.8 91.6/89.8/81.6 98.0/97.6/94.2 98.5/98.4/93.9
macaroni2 88.3/84.5/83.8 71.6/71.6/69.9 68.3/54.3/59.7 68.9/62.1/67.7 62.5/57.4/69.6 81.6/78.0/73.8 95.9/95.7/90.7 96.9/96.8/92.8
capsules 82.2/90.4/81.3 55.6/55.6/76.9 74.1/82.8/74.6 87.1/93.0/84.2 58.2/69.0/78.5 91.8/95.0/88.8 98.6/99.0/97.1 99.1/99.4/98.0
candle 92.3/92.9/86.0 94.1/94.0/86.1 84.1/73.3/76.6 94.9/94.8/89.2 92.8/92.0/87.6 96.8/96.9/90.1 98.7/98.8/95.1 98.4/98.5/93.5
cashew 92.0/95.8/90.7 92.8/92.8/91.4 88.0/91.3/84.7 92.0/96.1/88.1 91.5/95.7/89.7 94.5/97.3/91.1 98.7/99.4/97.0 98.6/99.4/96.5

chewinggum 94.9/97.5/92.1 96.3/96.2/95.2 96.4/98.2/93.8 95.8/98.3/94.7 99.1/99.5/95.9 97.7/98.9/94.2 99.8/99.9/99.0 99.7/99.9/98.5
fryum 95.3/97.9/91.5 83.0/83.0/85.0 88.4/93.0/83.3 92.1/96.1/89.5 89.8/95.0/87.2 95.2/97.7/90.5 98.8/99.4/96.5 99.3/99.7/98.0

pipe fryum 97.9/98.9/96.5 94.7/94.7/93.9 90.8/95.5/88.6 94.1/97.1/91.9 96.2/98.1/93.7 98.7/99.3/97.0 99.2/99.7/97.0 99.5/99.8/98.5

Mean 92.4/92.4/89.6 85.5/85.5/84.4 87.2/87.0/81.8 88.9/89.0/85.2 86.8/88.3/85.1 94.3/94.5/89.4 98.7/98.9/96.2 98.9/99.0/96.6



Table S15. Per-Class Results on the VisA [19] Dataset for Multi-Class Anomaly Localization with AUROC/AP/F1 max/AUPRO metrics.

Method → RD4AD [5] UniAD [17] SimpleNet [14] DeSTSeg [18] DiAD [9] MambaAD [8] Dinomaly [7] INP-Former
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 NeurIPS’24 Arxiv’24 Ours

pcb1 99.4/66.2/62.4/95.8 93.3/3.9/8.3/64.1 99.2/86.1/78.8/83.6 95.8/46.4/49.0/83.2 98.7/49.6/52.8/80.2 99.8/77.1/72.4/92.8 99.5/87.9/80.5/95.1 99.6/87.6/80.1/95.2
pcb2 98.0/22.3/30.0/90.8 93.9/4.2/9.2/66.9 96.6/8.9/18.6/85.7 97.3/14.6/28.2/79.9 95.2/7.5/16.7/67.0 98.9/13.3/23.4/89.6 98.0/47.0/49.8/91.3 98.7/31.2/40.1/91.9
pcb3 97.9/26.2/35.2/93.9 97.3/13.8/21.9/70.6 97.2/31.0/36.1/85.1 97.7/28.1/33.4/62.4 96.7/8.0/18.8/68.9 99.1/18.3/27.4/89.1 98.4/41.7/45.3/94.6 98.8/30.6/39.4/94.3
pcb4 97.8/31.4/37.0/88.7 94.9/14.7/22.9/72.3 93.9/23.9/32.9/61.1 95.8/53.0/53.2/76.9 97.0/17.6/27.2/85.0 98.6/47.0/46.9/87.6 98.7/50.5/53.1/94.4 98.8/53.2/53.5/94.2

macaroni1 99.4/2.9/6.9/95.3 97.4/3.7/9.7/84.0 98.9/3.5/8.4/92.0 99.1/5.8/13.4/62.4 94.1/10.2/16.7/68.5 99.5/17.5/27.6/95.2 99.6/33.5/40.6/96.4 99.6/33.9/41.1/96.0
macaroni2 99.7/13.2/21.8/97.4 95.2/0.9/4.3/76.6 93.2/0.6/3.9/77.8 98.5/6.3/14.4/70.0 93.6/0.9/2.8/73.1 99.5/9.2/16.1/96.2 99.7/24.7/36.1/98.7 99.8/26.8/37.8/98.7
capsules 99.4/60.4/60.8/93.1 88.7/3.0/7.4/43.7 97.1/52.9/53.3/73.7 96.9/33.2/9.1/76.7 97.3/10.0/21.0/77.9 99.1/61.3/59.8/91.8 99.6/65.0/66.6/97.4 99.6/67.2/66.2/98.0
candle 99.1/25.3/35.8/94.9 98.5/17.6/27.9/91.6 97.6/8.4/16.5/87.6 98.7/39.9/45.8/69.0 97.3/12.8/22.8/89.4 99.0/23.2/32.4/95.5 99.4/43.0/47.9/95.4 99.4/43.9/49.7/95.6
cashew 91.7/44.2/49.7/86.2 98.6/51.7/58.3/87.9 98.9/68.9/66.0/84.1 87.9/47.6/52.1/66.3 90.9/53.1/60.9/61.8 94.3/46.8/51.4/87.8 97.1/64.5/62.4/94.0 97.7/66.2/64.0/92.0

chewinggum 98.7/59.9/61.7/76.9 98.8/54.9/56.1/81.3 97.9/26.8/29.8/78.3 98.8/86.9/81.0/68.3 94.7/11.9/25.8/59.5 98.1/57.5/59.9/79.7 99.1/65.0/67.7/88.1 98.9/59.6/64.2/86.5
fryum 97.0/47.6/51.5/93.4 95.9/34.0/40.6/76.2 93.0/39.1/45.4/85.1 88.1/35.2/38.5/47.7 97.6/58.6/60.1/81.3 96.9/47.8/51.9/91.6 96.6/51.6/53.4/93.5 96.8/51.2/53.6/94.2

pipe fryum 99.1/56.8/58.8/95.4 98.9/50.2/57.7/91.5 98.5/65.6/63.4/83.0 98.9/78.8/72.7/45.9 99.4/72.7/69.9/89.9 99.1/53.5/58.5/95.1 99.2/64.3/65.1/95.2 99.3/63.3/67.2/95.8

Mean 98.1/38.0/42.6/91.8 95.9/21.0/27.0/75.6 96.8/34.7/37.8/81.4 96.1/39.6/43.4/67.4 96.0/26.1/33.0/75.2 98.5/39.4/44.0/91.0 98.7/53.2/55.7/94.5 98.9/51.2/54.7/94.4

Table S16. Per-Class Results on the Real-IAD [16] Dataset for Multi-Class Anomaly Detection with AUROC/AP/F1 max metrics.

Method → RD4AD [5] UniAD [17] SimpleNet [14] DeSTSeg [18] DiAD [9] MambaAD [8] Dinomaly [7] INP-Former
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 NeurIPS’24 Arxiv’24 Ours

audiojack 76.2/63.2/60.8 81.4/76.6/64.9 58.4/44.2/50.9 81.1/72.6/64.5 76.5/54.3/65.7 84.2/76.5/67.4 86.8/82.4/72.2 88.9/84.6/74.0
bottle cap 89.5/86.3/81.0 92.5/91.7/81.7 54.1/47.6/60.3 78.1/74.6/68.1 91.6/94.0/87.9 92.8/92.0/82.1 89.9/86.7/81.2 89.3/86.1/81.1

button battery 73.3/78.9/76.1 75.9/81.6/76.3 52.5/60.5/72.4 86.7/89.2/83.5 80.5/71.3/70.6 79.8/85.3/77.8 86.6/88.9/82.1 86.2/88.4/82.0
end cap 79.8/84.0/77.8 80.9/86.1/78.0 51.6/60.8/72.9 77.9/81.1/77.1 85.1/83.4/84.8 78.0/82.8/77.2 87.0/87.5/83.4 87.0/87.0/84.2
eraser 90.0/88.7/79.7 90.3/89.2/80.2 46.4/39.1/55.8 84.6/82.9/71.8 80.0/80.0/77.3 87.5/86.2/76.1 90.3/87.6/78.6 92.4/90.2/81.2

fire hood 78.3/70.1/64.5 80.6/74.8/66.4 58.1/41.9/54.4 81.7/72.4/67.7 83.3/81.7/80.5 79.3/72.5/64.8 83.8/76.2/69.5 86.5/79.0/72.7
mint 65.8/63.1/64.8 67.0/66.6/64.6 52.4/50.3/63.7 58.4/55.8/63.7 76.7/76.7/76.0 70.1/70.8/65.5 73.1/72.0/67.7 77.2/76.8/69.9

mounts 88.6/79.9/74.8 87.6/77.3/77.2 58.7/48.1/52.4 74.7/56.5/63.1 75.3/74.5/82.5 86.8/78.0/73.5 90.4/84.2/78.0 88.1/77.4/77.4
pcb 79.5/85.8/79.7 81.0/88.2/79.1 54.5/66.0/75.5 82.0/88.7/79.6 86.0/85.1/85.4 89.1/93.7/84.0 92.0/95.3/87.0 93.9/96.3/89.1

phone battery 87.5/83.3/77.1 83.6/80.0/71.6 51.6/43.8/58.0 83.3/81.8/72.1 82.3/77.7/75.9 90.2/88.9/80.5 92.9/91.6/82.5 93.7/92.1/83.7
plastic nut 80.3/68.0/64.4 80.0/69.2/63.7 59.2/40.3/51.8 83.1/75.4/66.5 71.9/58.2/65.6 87.1/80.7/70.7 88.3/81.8/74.7 91.2/85.3/78.1
plastic plug 81.9/74.3/68.8 81.4/75.9/67.6 48.2/38.4/54.6 71.7/63.1/60.0 88.7/89.2/90.9 85.7/82.2/72.6 90.5/86.4/78.6 90.9/87.9/78.9

porcelain doll 86.3/76.3/71.5 85.1/75.2/69.3 66.3/54.5/52.1 78.7/66.2/64.3 72.6/66.8/65.2 88.0/82.2/74.1 85.1/73.3/69.6 88.5/80.9/72.9
regulator 66.9/48.8/47.7 56.9/41.5/44.5 50.5/29.0/43.9 79.2/63.5/56.9 72.1/71.4/78.2 69.7/58.7/50.4 85.2/78.9/69.8 83.8/75.6/64.9

rolled strip base 97.5/98.7/94.7 98.7/99.3/96.5 59.0/75.7/79.8 96.5/98.2/93.0 68.4/55.9/56.8 98.0/99.0/95.0 99.2/99.6/97.1 99.3/99.6/97.2
sim card set 91.6/91.8/84.8 89.7/90.3/83.2 63.1/69.7/70.8 95.5/96.2/89.2 72.6/53.7/61.5 94.4/95.1/87.2 95.8/96.3/88.8 96.6/97.0/90.4

switch 84.3/87.2/77.9 85.5/88.6/78.4 62.2/66.8/68.6 90.1/92.8/83.1 73.4/49.4/61.2 91.7/94.0/85.4 97.8/98.1/93.3 98.0/98.4/93.8
tape 96.0/95.1/87.6 97.2/96.2/89.4 49.9/41.1/54.5 94.5/93.4/85.9 73.9/57.8/66.1 96.8/95.9/89.3 96.9/95.0/88.8 97.4/96.1/89.7

terminalblock 89.4/89.7/83.1 87.5/89.1/81.0 59.8/64.7/68.8 83.1/86.2/76.6 62.1/36.4/47.8 96.1/96.8/90.0 96.7/97.4/91.1 96.9/97.4/91.7
toothbrush 82.0/83.8/77.2 78.4/80.1/75.6 65.9/70.0/70.1 83.7/85.3/79.0 91.2/93.7/90.9 85.1/86.2/80.3 90.4/91.9/83.4 89.9/91.4/83.2

toy 69.4/74.2/75.9 68.4/75.1/74.8 57.8/64.4/73.4 70.3/74.8/75.4 66.2/57.3/59.8 83.0/87.5/79.6 85.6/89.1/81.9 88.0/90.9/83.9
toy brick 63.6/56.1/59.0 77.0/71.1/66.2 58.3/49.7/58.2 73.2/68.7/63.3 68.4/45.3/55.9 70.5/63.7/61.6 72.3/65.1/63.4 75.2/69.9/64.6

transistor1 91.0/94.0/85.1 93.7/95.9/88.9 62.2/69.2/72.1 90.2/92.1/84.6 73.1/63.1/62.7 94.4/96.0/89.0 97.4/98.2/93.1 97.8/98.4/93.8
u block 89.5/85.0/74.2 88.8/84.2/75.5 62.4/48.4/51.8 80.1/73.9/64.3 75.2/68.4/67.9 89.7/85.7/75.3 89.9/84.0/75.2 91.9/87.5/77.8

usb 84.9/84.3/75.1 78.7/79.4/69.1 57.0/55.3/62.9 87.8/88.0/78.3 58.9/37.4/45.7 92.0/92.2/84.5 92.0/91.6/83.3 94.4/93.6/86.8
usb adaptor 71.1/61.4/62.2 76.8/71.3/64.9 47.5/38.4/56.5 80.1/74.9/67.4 76.9/60.2/67.2 79.4/76.0/66.3 81.5/74.5/69.4 85.2/78.4/73.1

vcpill 85.1/80.3/72.4 87.1/84.0/74.7 59.0/48.7/56.4 83.8/81.5/69.9 64.1/40.4/56.2 88.3/87.7/77.4 92.0/91.2/82.0 92.8/92.2/83.1
wooden beads 81.2/78.9/70.9 78.4/77.2/67.8 55.1/52.0/60.2 82.4/78.5/73.0 62.1/56.4/65.9 82.5/81.7/71.8 87.3/85.8/77.4 89.8/88.9/80.2

woodstick 76.9/61.2/58.1 80.8/72.6/63.6 58.2/35.6/45.2 80.4/69.2/60.3 74.1/66.0/62.1 80.4/69.0/63.4 84.0/73.3/65.6 85.4/75.0/68.0
zipper 95.3/97.2/91.2 98.2/98.9/95.3 77.2/86.7/77.6 96.9/98.1/93.5 86.0/87.0/84.0 99.2/99.6/96.9 99.1/99.5/96.5 99.1/99.5/96.3

Mean 82.4/79.0/73.9 83.0/80.9/74.3 57.2/53.4/61.5 82.3/79.2/73.2 75.6/66.4/69.9 86.3/84.6/77.0 89.3/86.8/80.2 90.5/88.1/81.5



Table S17. Per-Class Results on the Real-IAD [16] Dataset for Multi-Class Anomaly Localization with AUROC/AP/F1 max/AUPRO
metrics.

Method → RD4AD [5] UniAD [17] SimpleNet [14] DeSTSeg [18] DiAD [9] MambaAD [8] Dinomaly [7] INP-Former
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 NeurIPS’24 Arxiv’24 Ours

audiojack 96.6/12.8/22.1/79.6 97.6/20.0/31.0/83.7 74.4/0.9/4.8/38.0 95.5/25.4/31.9/52.6 91.6/1.0/3.9/63.3 97.7/21.6/29.5/83.9 98.7/48.1/54.5/91.7 99.2/54.6/56.5/95.0
bottle cap 99.5/18.9/29.9/95.7 99.5/19.4/29.6/96.0 85.3/2.3/5.7/45.1 94.5/25.3/31.1/25.3 94.6/4.9/11.4/73.0 99.7/30.6/34.6/97.2 99.7/32.4/36.7/98.1 99.7/34.2/39.1/97.8

button battery 97.6/33.8/37.8/86.5 96.7/28.5/34.4/77.5 75.9/3.2/6.6/40.5 98.3/63.9/60.4/36.9 84.1/1.4/5.3/66.9 98.1/46.7/49.5/86.2 99.1/46.9/56.7/92.9 99.0/39.5/55.8/92.8
end cap 96.7/12.5/22.5/89.2 95.8/8.8/17.4/85.4 63.1/0.5/2.8/25.7 89.6/14.4/22.7/29.5 81.3/2.0/6.9/38.2 97.0/12.0/19.6/89.4 99.1/26.2/32.9/96.0 99.2/25.8/32.6/96.6
eraser 99.5/30.8/36.7/96.0 99.3/24.4/30.9/94.1 80.6/2.7/7.1/42.8 95.8/52.7/53.9/46.7 91.1/7.7/15.4/67.5 99.2/30.2/38.3/93.7 99.5/39.6/43.3/96.4 99.7/47.4/48.2/97.6

fire hood 98.9/27.7/35.2/87.9 98.6/23.4/32.2/85.3 70.5/0.3/2.2/25.3 97.3/27.1/35.3/34.7 91.8/3.2/9.2/66.7 98.7/25.1/31.3/86.3 99.3/38.4/42.7/93.0 99.4/44.1/46.6/95.4
mint 95.0/11.7/23.0/72.3 94.4/7.7/18.1/62.3 79.9/0.9/3.6/43.3 84.1/10.3/22.4/9.9 91.1/5.7/11.6/64.2 96.5/15.9/27.0/72.6 96.9/22.0/32.5/77.6 97.2/27.6/37.9/81.1

mounts 99.3/30.6/37.1/94.9 99.4/28.0/32.8/95.2 80.5/2.2/6.8/46.1 94.2/30.0/41.3/43.3 84.3/0.4/1.1/48.8 99.2/31.4/35.4/93.5 99.4/39.9/44.3/95.6 99.5/39.7/43.5/96.7
pcb 97.5/15.8/24.3/88.3 97.0/18.5/28.1/81.6 78.0/1.4/4.3/41.3 97.2/37.1/40.4/48.8 92.0/3.7/7.4/66.5 99.2/46.3/50.4/93.1 99.3/55.0/56.3/95.7 99.5/60.4/59.9/96.7

phone battery 77.3/22.6/31.7/94.5 85.5/11.2/21.6/88.5 43.4/0.1/0.9/11.8 79.5/25.6/33.8/39.5 96.8/5.3/11.4/85.4 99.4/36.3/41.3/95.3 99.7/51.6/54.2/96.8 99.7/66.0/60.3/97.3
plastic nut 98.8/21.1/29.6/91.0 98.4/20.6/27.1/88.9 77.4/0.6/3.6/41.5 96.5/44.8/45.7/38.4 81.1/0.4/3.4/38.6 99.4/33.1/37.3/96.1 99.7/41.0/45.0/97.4 99.8/44.3/45.8/98.4

plastic plug 99.1/20.5/28.4/94.9 98.6/17.4/26.1/90.3 78.6/0.7/1.9/38.8 91.9/20.1/27.3/21.0 92.9/8.7/15.0/66.1 99.0/24.2/31.7/91.5 99.4/31.7/37.2/96.4 99.4/33.6/39.0/96.7
porcelain doll 99.2/24.8/34.6/95.7 98.7/14.1/24.5/93.2 81.8/2.0/6.4/47.0 93.1/35.9/40.3/24.8 93.1/1.4/4.8/70.4 99.2/31.3/36.6/95.4 99.3/27.9/33.9/96.0 99.4/37.2/42.3/96.9

regulator 98.0/7.8/16.1/88.6 95.5/9.1/17.4/76.1 76.6/0.1/0.6/38.1 88.8/18.9/23.6/17.5 84.2/0.4/1.5/44.4 97.6/20.6/29.8/87.0 99.3/42.2/48.9/95.6 99.3/45.3/51.4/95.7
rolled strip base 99.7/31.4/39.9/98.4 99.6/20.7/32.2/97.8 80.5/1.7/5.1/52.1 99.2/48.7/50.1/55.5 87.7/0.6/3.2/63.4 99.7/37.4/42.5/98.8 99.7/41.6/45.5/98.5 99.8/48.3/52.9/98.8

sim card set 98.5/40.2/44.2/89.5 97.9/31.6/39.8/85.0 71.0/6.8/14.3/30.8 99.1/65.5/62.1/73.9 89.9/1.7/5.8/60.4 98.8/51.1/50.6/89.4 99.0/52.1/52.9/90.9 99.3/60.6/58.5/94.2
switch 94.4/18.9/26.6/90.9 98.1/33.8/40.6/90.7 71.7/3.7/9.3/44.2 97.4/57.6/55.6/44.7 90.5/1.4/5.3/64.2 98.2/39.9/45.4/92.9 96.7/62.3/63.6/95.9 97.5/63.5/62.3/96.3
tape 99.7/42.4/47.8/98.4 99.7/29.2/36.9/97.5 77.5/1.2/3.9/41.4 99.0/61.7/57.6/48.2 81.7/0.4/2.7/47.3 99.8/47.1/48.2/98.0 99.8/54.0/55.8/98.8 99.8/58.4/58.1/98.9

terminalblock 99.5/27.4/35.8/97.6 99.2/23.1/30.5/94.4 87.0/0.8/3.6/54.8 96.6/40.6/44.1/34.8 75.5/0.1/1.1/38.5 99.8/35.3/39.7/98.2 99.8/48.0/50.7/98.8 99.8/54.0/53.9/99.0
toothbrush 96.9/26.1/34.2/88.7 95.7/16.4/25.3/84.3 84.7/7.2/14.8/52.6 94.3/30.0/37.3/42.8 82.0/1.9/6.6/54.5 97.5/27.8/36.7/91.4 96.9/38.3/43.9/90.4 96.9/39.7/44.6/90.8

toy 95.2/5.1/12.8/82.3 93.4/4.6/12.4/70.5 67.7/0.1/0.4/25.0 86.3/8.1/15.9/16.4 82.1/1.1/4.2/50.3 96.0/16.4/25.8/86.3 94.9/22.5/32.1/91.0 95.3/26.4/35.3/92.1
toy brick 96.4/16.0/24.6/75.3 97.4/17.1/27.6/81.3 86.5/5.2/11.1/56.3 94.7/24.6/30.8/45.5 93.5/3.1/8.1/66.4 96.6/18.0/25.8/74.7 96.8/27.9/34.0/76.6 97.3/37.0/41.2/80.0

transistor1 99.1/29.6/35.5/95.1 98.9/25.6/33.2/94.3 71.7/5.1/11.3/35.3 97.3/43.8/44.5/45.4 88.6/7.2/15.3/58.1 99.4/39.4/40.0/96.5 99.6/53.5/53.3/97.8 99.6/57.7/55.6/97.8
u block 99.6/40.5/45.2/96.9 99.3/22.3/29.6/94.3 76.2/4.8/12.2/34.0 96.9/57.1/55.7/38.5 88.8/1.6/5.4/54.2 99.5/37.8/46.1/95.4 99.5/41.8/45.6/96.8 99.6/50.9/53.8/97.6

usb 98.1/26.4/35.2/91.0 97.9/20.6/31.7/85.3 81.1/1.5/4.9/52.4 98.4/42.2/47.7/57.1 78.0/1.0/3.1/28.0 99.2/39.1/44.4/95.2 99.2/45.0/48.7/97.5 99.4/48.7/50.5/98.1
usb adaptor 94.5/9.8/17.9/73.1 96.6/10.5/19.0/78.4 67.9/0.2/1.3/28.9 94.9/25.5/34.9/36.4 94.0/2.3/6.6/75.5 97.3/15.3/22.6/82.5 98.7/23.7/32.7/91.0 99.3/29.9/36.1/94.4

vcpill 98.3/43.1/48.6/88.7 99.1/40.7/43.0/91.3 68.2/1.1/3.3/22.0 97.1/64.7/62.3/42.3 90.2/1.3/5.2/60.8 98.7/50.2/54.5/89.3 99.1/66.4/66.7/93.7 99.2/71.7/69.0/94.6
wooden beads 98.0/27.1/34.7/85.7 97.6/16.5/23.6/84.6 68.1/2.4/6.0/28.3 94.7/38.9/42.9/39.4 85.0/1.1/4.7/45.6 98.0/32.6/39.8/84.5 99.1/45.8/50.1/90.5 99.2/52.3/53.6/92.4

woodstick 97.8/30.7/38.4/85.0 94.0/36.2/44.3/77.2 76.1/1.4/6.0/32.0 97.9/60.3/60.0/51.0 90.9/2.6/8.0/60.7 97.7/40.1/44.9/82.7 99.0/50.9/52.1/90.4 99.2/55.1/54.9/92.4
zipper 99.1/44.7/50.2/96.3 98.4/32.5/36.1/95.1 89.9/23.3/31.2/55.5 98.2/35.3/39.0/78.5 90.2/12.5/18.8/53.5 99.3/58.2/61.3/97.6 99.3/67.2/66.5/97.8 99.4/71.6/69.2/97.6

Mean 97.3/25.0/32.7/89.6 97.3/21.1/29.2/86.7 75.7/2.8/6.5/39.0 94.6/37.9/41.7/40.6 88.0/2.9/7.1/58.1 98.5/33.0/38.7/90.5 98.8/42.8/47.1/93.9 99.0/47.5/50.3/95.0



Figure S3. Anomaly localization results on the MVTec-AD [2] dataset under the multi-class anomaly detection setting. For each
tuple, the images from top to bottom represent the anomaly image, ground truth, and predicted anomaly map.



Figure S4. Anomaly localization results on the VisA [19] dataset under the multi-class anomaly detection setting. For each tuple, the
images from top to bottom represent the anomaly image, ground truth, and predicted anomaly map.



Figure S5. Anomaly localization results on the Real-IAD [16] dataset under the multi-class anomaly detection setting. For each
tuple, the images from top to bottom represent the anomaly image, ground truth, and predicted anomaly map.



Figure S6. Cross-attention maps between INPs and image patches.
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