
ICP: Immediate Compensation Pruning for Mid-to-high Sparsity

Supplementary Material

1. Theoretical Foundations
Large models are typically hierarchical and can be effec-
tively viewed as a complex nested function:

F (xi; θ) = fn (. . . fj (. . . f1 (x; θ1) . . . ; θj) . . . ; θn) , (1)

where x is the input sample, fj represents the mapping
function of Block Bj and θ denotes the function parame-
ters. Pruning a block effectively introduces a perturbation
∆θ to that block’s parameters. Taking Bj as an example,
when pruning is applied such that θj = θj + ∆θ, the error
introduced by this perturbation propagates from the output
of Bj through to the final Block, leading to a deviation in
the global model output:

∆Yj ≈
∂F

∂fj
· ∂fj
∂θj

·∆θj =

 n∏
i=j+1

∂fi
∂zi−1

 · ∂z
j

∂θj
·∆θj ,

(2)
where ∂zj represents the output of Bj , in the model, and
∆Yj denotes the change in the model output caused by
pruning Bj . From this equation, we observe that the closer
the pruned block is to the model’s output (i.e., the further
back in the model), the more directly the pruning affects the
output. Conversely, the further the pruned block is from the
output, the more difficult it becomes to control the resulting
error. However, we can select a subsequent Block Bk after
Bj to compensate for the changes introduced by pruning.
If we adjust the parameters of Bk, its effect on the model
output is similarly given by:

∆Yk =

(
n∏

i=k+1

∂fk
∂zk−1

)
· ∂z

k

∂θk
·∆θk. (3)

By setting ∆Yj +∆Yk = 0, we can derive:

∆θk = −

(∏n
i=j+1

∂fi
∂zi−1

)
· ∂fj
∂θj

·∆θj(∏n
i=k+1

∂fi
∂zi−1

)
· ∂fk
∂θk

. (4)

From Eq. (4), we can observe that the closer Bk is to Bj ,
the more direct the relationship between their parameters.
Specifically, if k = j + 1, then

∏k
i=j+1

∂fi
∂zi−1 =

∂fj+1

∂zj ,
making the compensation more direct and easier to control.

However, the above compensation method requires ac-
cess to the model’s output, which can be both memory-
intensive and time-consuming. Therefore, Progressive
Block Pruning adopts a partial compensation approach.
During error compensation, we directly use the MSE loss

of zk, the output of Bk, as the compensation loss. This can
be expressed as:

Lk(θk) =
1

2m

m∑
i=1

∥z′k(θ′k)− zk(θk)∥2. (5)

The global optimization objective for the model is:

Lglobal =
1

2m

m∑
i=1

∥F ′(xi)− F (xi)∥2. (6)

The optimization directions of Eq. (5) and Eq. (6) are
aligned because, when we take the derivatives of these two
equations, we obtain:

∂Lk(θk)

∂∆θk
=

1

m

m∑
i=1

(
∆z′k(xi) ·

∂zk

∂θk

)
, (7)

∂Lglobal

∂∆θk
=

1

m

m∑
i=1

(
∂F

∂zk
·∆z′k(xi) ·

∂zk

∂θk
· ∂F
∂zk

)
. (8)

The signs of these derivatives are the same, indicating that
the optimization directions are consistent. Therefore, we
can use Lk to implicitly optimize Lglobal.

Based on the above theoretical analysis, we can draw the
following three conclusions:
• The error introduced by pruning can be compensated for

by adjusting subsequent blocks in the model.
• The closer the compensating block is to the pruned block,

the more direct the relationship between their parameters.
• Local MSE can be used to implicitly optimize the global

MSE.

2. Implementation Details
This subsection supplements the implementation details of
pruning and compensation processes of ICP based on ex-
perimental setup (Section 4.1) outlined in the main text.

2.1. Algorithm Implementation
ICP adopts an iterative block-wise pruning-compensation
strategy. During pruning, a one-shot approach is applied-
each block is pruned directly to the target sparsity level
in a single step rather than progressively over multiple
stages[1, 3], considering computational efficiency and over-
fitting prevention. In the compensation phase, weight up-
dates are restricted to the currently processed block; no
other blocks, including the recently pruned one, participate
in weight updates. Moreover, a unified learning rate is em-
ployed for all compensation processes across blocks, obvi-
ating the need for block-specific learning rate tuning.



2.2. Memory Efficiency
ICP is designed to be memory-efficient. Since both prun-
ing and compensation operations are performed on different
single block, GPU memory only needs to store the weights
of a single block at any given time. Additionally, the opti-
mizer state and gradients are similarly constrained to a sin-
gle block. This significantly reduces memory usage despite
involving training-like updates.

At the outset, the input z of the first block is copied to
produce z′ beyond this point, no additional storage space is
allocated for any intermediate results at any stage, including
during compensation. As the sliding window advances, z
and z′ are updated in place rather than storing intermediate
forward pass results.

During compensation, when z′ through a block to gen-
erate labels for z, all samples in z′ are processed in a sin-
gle forward pass an updated. This avoids the per-iteration
forward pass required in traditional knowledge distillation,
which needs to maintain two models simultaneously. Con-
sequently, only one block’s parameters are stored in GPU
memory.

Finally, all intermediate results are offloaded to system
memory. GPU inference of the current batch and preloading
of the next batch are executed in parallel to further optimize
runtime.

3. Supplementary Results of Unstructured
Pruning

In Section 4.2 of the main text, we reported the instance
segmentation performance of the pruned SAM model using
the proposed method under single-point interaction. Here,
we supplement the segmentation performance of the SAM
model using bounding box interaction in Tables 1 and 2.
The experimental setup strictly adheres to the configura-
tions described in the main text, and the implementation
details are fully consistent with those outlined in the previ-
ous section. Compared to single-point interaction, bound-
ing box interaction further narrows the performance gap be-
tween different compression methods. However, the advan-
tage of our method over the baseline remains significant.

4. Additional Ablation Studies
4.1. Calibration Dataset Sensitivity Ablation
A key step in the proposed ICP framework involves ran-
domly sampling 128 instances from the pre-training dataset
to construct a calibration set. In Section 4.5, we inves-
tigated the impact of dataset size on the model’s perfor-
mance. Here, we extend our analysis by conducting abla-
tion studies on different calibration sets-each consisting of
128 samples randomly drawn from the same pre-training
dataset-to assess how variations in the calibration data af-

Table 1. Instance segmentation performance of SAM models (IoU,
%) at various sparsity using box interaction on SA-1B. The models
were calibrated on a subset of 128 images sampled from SA-1B.

Method Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Magnitude

SAM-H

92.47 92.40 92.18 91.73 90.64 87.66 76.49 66.76 63.23
SparseGPT 92.48 92.47 92.44 92.35 92.12 91.50 89.77 85.02 76.10
Wanda 92.48 92.47 92.41 92.21 91.72 90.20 85.36 78.49 72.78
ICP (ours) 92.48 92.48 92.46 92.38 92.29 91.92 91.52 90.18 84.67

Magnitude

SAM-L

92.07 92.00 91.79 91.25 90.09 87.27 81.23 72.26 65.88
SparseGPT 92.06 92.04 91.99 91.87 91.57 90.87 88.90 83.93 75.33
Wanda 92.06 92.04 91.96 91.73 91.15 89.47 84.95 77.93 69.20
ICP (ours) 92.07 92.04 92.00 91.93 91.78 91.50 90.86 89.14 83.50

Magnitude

SAM-B

89.83 89.75 89.45 88.69 87.37 84.81 79.41 72.47 65.16
SparseGPT 89.83 89.81 89.73 89.57 89.17 88.36 86.54 82.37 76.61
Wanda 89.83 89.80 89.67 89.26 88.38 86.56 82.37 76.52 71.44
ICP (ours) 89.83 89.81 89.76 89.70 89.47 89.12 88.39 86.62 82.23

Table 2. Instance segmentation performance of SAM models (IoU,
%) at various sparsity using box interaction on COCO. The models
were calibrated on a subset of 128 images sampled from SA-1B.

Method Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Magnitude

SAM-H

77.24 77.21 77.14 77.03 76.62 74.62 65.23 55.06 54.78
SparseGPT 77.25 77.24 77.21 77.16 77.07 76.78 75.99 72.59 66.40
Wanda 77.25 77.24 77.23 77.21 76.98 75.89 71.89 66.61 60.96
ICP (ours) 77.25 77.25 77.22 77.22 77.02 76.87 76.38 75.08 70.82

Magnitude

SAM-L

77.08 77.07 76.97 76.74 76.19 74.33 69.60 61.60 57.08
SparseGPT 77.09 77.07 77.06 77.04 76.89 76.54 75.44 72.31 65.72
Wanda 77.10 77.08 77.02 76.91 76.64 75.59 72.03 66.48 59.03
ICP (ours) 77.05 77.05 77.06 77.04 76.91 76.63 76.08 74.55 70.62

Magnitude

SAM-B

75.59 75.59 75.57 75.34 74.61 72.95 68.48 61.74 53.54
SparseGPT 75.60 75.57 75.55 75.51 75.34 74.85 73.87 70.82 66.59
Wanda 75.58 75.59 75.58 75.38 74.76 73.35 70.10 65.90 60.66
ICP (ours) 75.57 75.57 75.59 75.54 75.39 75.03 74.69 73.64 70.55

fect the model. We conducted 30 repetitions of the prun-
ing process for Wanda, SparseGPT, and ICP on OPT-125M
on spartsity of 50%, each time re-sampling the calibration
set and recording the model’s performance. As shown in
Fig.1, different calibration sets induce minor fluctuations in
the performance of the pruned model across the methods,
with the ICP approach exhibiting slightly larger variance
than Wanda and SparseGPT. This is attributed to the small
size of the calibration set and the fact that the same calibra-
tion set is employed for both pruning and compensation.
Consequently, certain calibration sets can deviate signifi-
cantly from the overall pre-training dataset, and such de-
viations are further amplified during the compensation pro-
cess—especially on the PTB dataset, which is not used for
calibration. Nonetheless, the overall perplexity of ICP re-
mains lower than that of Wanda and SparseGPT.

5. Inference Speed Acceleration Evaluation
Regarding the acceleration performance of the pruned
models, we provide the following discussion. Although
Wanda [4], SparseGPT [2], and ICP adopt different prun-
ing strategies, the resulting models share the same spar-
sity pattern, yielding either unstructured or semi-structured
sparse models. Consequently, during inference, the accel-



Wanda SparseGPT ICP
Pruning Method

35

40

45

50

55

PP
L 

(P
er

pl
ex

ity
)

Dataset
Wiki
PTB

Figure 1. Fluctuations in model performance using different cali-
bration datasets

eration effects achieved by the proposed ICP method are
consistent with those of Wanda and SparseGPT. Experimen-
tal results corroborate that the acceleration performance of
ICP is in line with our expectations. For reference, we cite
the acceleration performance reported for SparseGPT: For
OPT-125M, 2:4 sparse will get 1.64× speedup on A100,
40/50/60/70% sparsity, will get 1.57/1.82/2.16/2.39×
speedup on i9-7980XE.

References
[1] Jonathan Frankle and Michael Carbin. The lottery ticket hy-

pothesis: Finding sparse, trainable neural networks. In Inter-
national Conference on Learning Representations, 2018. 1

[2] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language
models can be accurately pruned in one-shot. In Interna-
tional Conference on Machine Learning, pages 10323–10337.
PMLR, 2023. 2

[3] Song Han, Jeff Pool, John Tran, and William Dally. Learn-
ing both weights and connections for efficient neural network.
Advances in neural information processing systems, 28, 2015.
1

[4] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.
A simple and effective pruning approach for large language
models. In The Twelfth International Conference on Learning
Representations, 2024. 2


	Theoretical Foundations
	Implementation Details
	Algorithm Implementation
	Memory Efficiency

	Supplementary Results of Unstructured Pruning
	Additional Ablation Studies
	Calibration Dataset Sensitivity Ablation

	Inference Speed Acceleration Evaluation

