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1. Annotation of the QuadTrack Dataset
In the annotation process of the established QuadTrack
dataset, we used CVAT [4], an open-source annotation tool
that supports tasks such as object detection, object track-
ing, and instance segmentation. CVAT offers both local and
online versions, providing high flexibility for users. Prior
to annotation, we preprocessed the dataset by selecting rep-
resentative scenes, including 32 sequences (seq), with 16
sequences allocated for training and 16 for testing. Each
sequence contains 600 frames with a frame rate of approx-
imately 10FPS, resulting in a duration of about 60 seconds
per sequence. Furthermore, to assist annotators in better
semantic understanding and precise labeling, we unfolded
the images into a 2048×480 panoramic layout via equirect-
angular projection. For the bounding boxes at the image
borders, we ensured continuous tracking, guaranteeing that
the same object in the surrounding environment maintained
a unique ID. The minimum bounding box area was set to
800 pixels, and any targets smaller than this area were ig-
nored. The QuadTrack dataset includes two common object
classes: car and person.

Upon completion of the annotation process, the final an-
notation attributes were thoroughly reviewed and validated
through a filtering and cross-validation procedure to ensure
data accuracy. After ensuring the correctness of the annota-
tions, the final annotation attributes were formatted into the
MOT standard [10]. Example of ground truth:
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Figure 1. Comparison of state-of-the-art methods on different
datasets. Pinhole refers to Multi-Object Tracking (MOT) datasets
that utilize pinhole camera images, whereas Panorama refers to
MOT datasets that employ panoramic images.

For a comprehensive description of the attributes in the
dataset, please refer to Tab. 1. This annotation format, com-
monly used in Multi-Object Tracking (MOT) research, pro-
vides a structured and standardized method for organizing
the data. The inclusion of essential attributes such as ob-
ject identity, bounding box coordinates, and visibility status
is critical for training and assessing tracking models in dy-
namic, real-world environments. In Fig. 4, examples from
the QuadTrack dataset are shown, demonstrating the diver-
sity of scenes and the visual presentation of annotations.

2. Additional Ablation Studies and Analyses

2.1. More Analyses of the DynamicSSM Block

We provide a more detailed discussion on the components
of the DynamicSSM Block in Tab. 2. The DynamicSSM
Block is composed of three primary operations: (i) distor-
tion alleviation, as described in the main text Equation 9, (ii)
addressing lighting and color inconsistencies, as detailed in
the main text Equation 10, and (iii) enhancing feature rep-
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Pos. Key Explanation
1 Frame id Represents the frame ID.
2 Track id A unique identifier for each object. A value of -1 indicates a detection item.
3 Left Coordinates of the top-left corner of the object bounding box.
4 Top Coordinates of the top-left corner of the object bounding box.
5 Width Width of the object bounding box.
6 Height Height of the object bounding box.
7 Confidence It acts as a flag whether the entry is to be considered (1) or ignored (0).
8 Class Indicates the type of object annotated.
9 Visibility Visibility ratio, a number between 0 and 1 that says how much of that object is visible.

Table 1. Detailed explanation of the annotation attributes for the QuadTrack dataset, including the meaning of each position.
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Figure 2. The QuadTrack dataset presents several significant challenges. The images labeled (a), (b), (c), and (d) illustrate continuous
frames 80 to 84 from a sequence, with corresponding magnified views shown on the right. In these magnifications, solid rectangular boxes
represent the Ground Truth (GT) for the current frame, while dashed boxes correspond to the GT from the preceding frame. One notable
challenge is motion blur, particularly evident in the magnified view of frame (b), where the bionic gait introduces substantial blur to the
target object. Moreover, there is considerable positional displacement between adjacent frames, as demonstrated in the magnified views of
frames (c) and (d). The panoramic images also present inherent exposure issues, displaying both overexposed and underexposed regions,
as seen in (a). Finally, the continuity inherent in the panoramic images presents an additional critical factor for the tracking task.

resentation, as formulated in the main text Equation 11. As
shown in Tab. 2, all three operations individually contribute
to improved performance, and their combination results in
the best overall performance. A comparison between ex-
periments ➀ and ➃ demonstrates that integrating all three
operations in the DynamicSSM Block leads to an overall
HOTA improvement of 1.82%.

2.2. More Analyses of the CircularStatE Module

In the CircularStatE Module, we designed a key component,
the DynamicSSM Block, to address challenges such as dis-
tortion and lighting inconsistencies inherent in panoramic
images. Compared to convolutional networks, the Dynam-
icSSM Block offers a significant performance advantage in
handling these issues. To further explore the impact of con-
volutional networks on multi-scale features, we conducted



Exp. Dconv SSM Fusion HOTA↑ IDF1↑ OSPA↓
➀ - - - 23.30 25.50 0.93
➁ - ✓ ✓ 24.82 27.17 0.92
➂ ✓ - ✓ 24.81 26.98 0.92
➃ ✓ ✓ - 24.72 26.66 0.92
➃ ✓ ✓ ✓ 25.12 27.42 0.93

Table 2. Ablation of the DynamicSSM Block: Dconv represents
deformable convolution (Equation 9 in the main text), SSM de-
notes the state-space model (Equation 10 in the main text), and
Fusion refers to the integration of residual features (Equation 11
in the main text).

Exp. S5 S4 S3 HOTA↑ IDF1↑ OSPA↓
➀ - - - 23.296 25.496 0.93415
➁ Conv Conv Conv 23.565 25.814 0.90931
➂ Conv - - 24.107 26.374 0.92567
➃ - Conv - 23.814 26.083 0.92624
➄ - - Conv 23.721 25.565 0.91992

Table 3. Analysis of the impact of convolution in the CircularStatE
Module. S3, S4, and S5 represent multi-scale features extracted
from the backbone [6]. Conv represent convolution.

additional experiments, as summarized in Tab. 3. The re-
sults show that applying a convolutional network to the S5
scale yielded the best performance for the CircularStatE
Module, achieving a HOTA score of 24.107%.

2.3. More Analyses of Hyperparameters
Analysis of Impacts of Training Epochs. We further
analyzed the variations observed across different epochs
by selecting the same parameters (i.e., track initialization
threshold of 0.55 and track update threshold of 0.45). The
experiments were conducted on the validation dataset of
JRDB [8], with model weights saved every 5 epochs, and
inference was performed at the end. The results are pre-
sented in Tab. 4. As shown in the table, different epochs
have a noticeable impact on the final HOTA metric. When
the epoch was set to 100, the best HOTA value of 25.12%
was achieved, with results from other epochs slightly lower
than this value. Overall, the results demonstrate that Om-
niTrack exhibits strong robustness and consistent perfor-
mance across different epochs.

Analysis of FlexiTrack Instance Noise. FlexiTrack In-
stance (Sec. 3.3 in the main text) plays a crucial role in
assisting the detection module to quickly locate targets in
panoramic field-of-view scenarios and establish temporal
associations between them. A key aspect of its performance
is the initialization phase, where the selection of motion
noise can significantly influence the overall tracking results.
To investigate this, we analyze the impact of different mo-
tion noise levels on FlexiTrack Instance’s performance on
the validation set of JRDB [8], as presented in Tab. 5. From
the table, it is evident that varying motion noise levels have

Exp. Epoch HOTA↑ IDF1↑ OSPA↓ MOTA↑
➀ 80 24.16 25.84 0.93 31.04
➁ 85 25.05 27.29 0.93 33.74
➂ 90 24.70 26.85 0.93 33.09
➃ 95 24.95 27.31 0.93 31.32
➄ 105 24.99 27.25 0.93 33.05
➅ 110 25.00 27.20 0.93 32.83
➆ 115 24.70 27.11 0.93 31.75
➇ 100 25.12 27.42 0.93 34.99

Table 4. Analysis of the impact of epochs on performance. Anal-
ysis of the performance impact of the OmniTrackE2E method
across different epochs, with other parameters held constant.

Exp. Noise HOTA↑ IDF1↑ OSPA↓ MOTA↑
➀ 0.1 19.72 20.65 0.95 28.63
➂ 0.8 24.32 26.28 0.93 34.88
➂ 1.0 23.61 25.84 0.93 33.12
➃ 0.5 25.12 27.42 0.93 34.99

Table 5. Ablation of FlexiTrack Instance noise. The noise men-
tioned here refers to the one applied to the anchor (in Equation 6
of the main text), while the feature vector remains unchanged.

a notable effect on the final HOTA score. Specifically, a
motion noise value of 0.5 improves performance, leading to
a significant boost in tracking accuracy.

2.4. More Analyses of MOT Datasets

To visually assess the overall performance of existing state-
of-the-art methods on panoramic MOT datasets, we com-
pare the pinhole-based MOT17 [10] and DanceTrack [12]
datasets with the panoramic datasets JRDB [8] and Quad-
Track. As shown in Figure 1, MOTRv2 [18] achieves a
HOTA of 73.4% on DanceTrack [12] but only 18.22% on
JRDB [8], representing a decrease of 55.18%. Similarly,
ByteTrack [17] achieves 63.1% HOTA on MOT17 [10] but
only 20.66% on QuadTrack, a drop of 42.44%. Overall, the
HOTA on panoramic datasets is approximately 30% lower
than on pinhole-based datasets. More importantly, Om-
niTrack significantly outperforms existing SOTA methods
on both panoramic datasets, marking a substantial advance-
ment in the field of panoramic multi-object tracking.

3. Reproduction of state-of-the-art Methods.

Due to the absence of existing performance records for
SOTA methods on the JRDB and QuadTrack datasets, all
comparative experiments in this paper were independently
reproduced. In the reproduction process, we prioritized us-
ing the official source code, provided it was executable. The
parameter selection was based on the recommendations in
the original papers, aiming to achieve optimal performance
on both the JRDB and QuadTrack datasets.



3.1. Methods for the E2E Paradigm.
TrackFormer. To reproduce the TrackFormer method [9],
we utilized the official source code (link) and applied it to
both JRDB [8] and QuadTrack datasets. Our implemen-
tation uses COCO pre-trained weights from Deformable
DETR [19], incorporating iterative bounding box refine-
ment to enhance tracking accuracy. The model is trained
on a single GPU with a batch size of 2. To adapt the model
for JRDB [8] and QuadTrack datasets, we reformat the data
to align with the MOT20 format [5], which is a widely
used format in multi-object tracking challenges. Training
is conducted for 30 epochs, with an initial learning rate of
2×10−4. The learning rate is decayed by a factor of 10
every 10 epochs, as per the official guidelines. All other
parameters remain unchanged, using the default values.
MOTR. In reproducing the MOTR method [16], we en-
countered challenges when training with the weights orig-
inally used in the TrackFormer method [9]. As a result,
we opted to train the model on the JRDB dataset [8] using
pre-trained weights from the MOT17 dataset [10], which is
specifically designed for multi-object tracking tasks. The
model is fine-tuned on a single GPU with a batch size of
1. To adapt the model to the JRDB dataset [8], we modi-
fied the data format to match the DanceTrack format [12].
This format adaptation ensures compatibility with the input
requirements of the MOTR framework [16]. The model is
trained for 25 epochs to ensure model convergence, with an
initial learning rate of 2×10−4. Based on the official source
code (link) and our experience, the learning rate is reduced
by a factor of 10 every 5 epochs. All other parameters were
retained at their default values, as per the official guidelines.
MOTRv2. The pre-trained weights are identical to those
used in TrackFormer [9]. The model is trained on a sin-
gle GPU with a batch size of 1. To adapt the model for
JRDB [8] and QuadTrack datasets, we convert the data to
the DanceTrack format [12]. Since MOTRv2 [18] is highly
dependent on detection results, we use ground truth detec-
tions for the training set to ensure optimal tracking perfor-
mance. For the test set, to maintain fairness, we generate
detection results using our own detector. The training pro-
cedure spans 15 epochs for JRDB [8] and 25 epochs for
QuadTrack, after which the model ceases to converge. The
initial learning rate is set to 2×10−4 with a decay factor
of 10 every 5 epochs, in alignment with the settings used
in MOTR [16]. All other parameters were retained at their
default values, as specified in the official source code (link).

3.2. Methods for the TDB Paradigm.
HybridSORT. In reproducing the HybridSORT
method [15] on both JRDB [8] and QuadTrack datasets,
we utilized the official source code (link). HybridSORT
offers two variants: an appearance-based version and an
appearance-free version. For all experiments presented in

this paper, the appearance-free version of HybridSORT was
employed. For parameter selection, consistent values were
applied across both JRDB [8] and QuadTrack datasets:
track thresh was set to 0.6 and iou thresh was set
to 0.15, in alignment with the settings used in the Dance-
Track dataset [12]. All other parameters were kept at their
default values, as specified in the official implementation.

SORT. As a pioneering approach in the TBD paradigm, the
SORT method [2] has multiple implementation versions.
However, due to the age of the original source code, it has
been deprecated. In this paper, we chose to reproduce the
SORT method based on the HybridSORT [15] source code
(link). For both JRDB [8] and QuadTrack datasets, we set
track thresh to 0.6 and iou thresh to 0.3, in align-
ment with the settings used for the SORT method on the
DanceTrack dataset [12]. All other parameters were re-
tained at their default values, as per the official guidelines.

DeepSORT. In the comparative experiments of this
paper, we encountered compatibility issues with the
DeepSORT [14] source code repository, which was not
compatible with Torch models, complicating the repro-
duction process. As a result, we chose to reproduce
the DeepSORT algorithm using the code from Hybrid-
SORT [15]. It is important to note that DeepSORT is
an appearance-based tracking method, which, in theory,
requires the separate training of the appearance module
for both JRDB [8] and QuadTrack datasets. However,
due to the lack of explicit guidance on training the
appearance weights, we used the pre-trained appear-
ance weights provided in the source code, specifically
the googlenet part8 all xavier ckpt 56.h5
checkpoint. All other parameters were retained at their
default values and were not modified.

ByteTrack & OC-SORT. In reproducing ByteTrack [17]
and OC-SORT [3], we chose to use their official source code
to ensure consistency and accuracy. All parameter settings
were directly taken from the official demo configurations,
which were specifically designed to optimize performance.
These settings were applied uniformly across both JRDB
and QuadTrack datasets to maintain a fair comparison. This
approach allows for a reliable evaluation of the performance
of both tracking algorithms on our datasets while adhering
to the original implementation guidelines.

BoT-SORT. BoT-SORT [1] is a tracker in the TBD
paradigm that integrates multiple techniques, including the
use of appearance features. For both JRDB [8] and Quad-
Track datasets, we trained the appearance feature model us-
ing Fast-ReID [7]. All other parameters were retained as
specified in the original BoT-SORT source code (link), en-
suring consistency with the default configuration.

https://github.com/timmeinhardt/trackformer
https://github.com/megvii-research/MOTR
https://github.com/megvii-research/MOTRv2
https://github.com/ymzis69/HybridSORT
https://github.com/ymzis69/HybridSORT
https://github.com/NirAharon/BoT-SORT


3.3. YOLO11 Detection
In the TBD paradigm of tracking, the performance heavily
depends on the detector’s results. We selected the best de-
tector in the YOLO series [11], YOLO11 [13], as the base-
line for comparison. To enhance the perception capabil-
ity, we selected the YOLO11 series model with the largest
number of parameters, the YOLO11-X [13], for training.
The training configuration consisted of 100 epochs, an im-
age size of 960, and a batch size of 8, with all other set-
tings maintained at their default values. Upon completion
of the training, the model weights from the best-performing
checkpoint, best.pt, were used to infer the images in the
test set. Detection results with confidence scores greater
than the threshold 0.1 were retained and subsequently pro-
vided as input to the tracker in the TBD paradigm.

4. Discussion
4.1. Societal Impacts
The OmniTrack framework is promising to enhance the
safety and reliability of autonomous systems by improving
Multi-Object Tracking (MOT) in panoramic settings, which
is essential for applications such as self-driving cars and
robots. Its ability to process panoramic fields of view while
mitigating distortions ensures robust performance in dy-
namic, real-world environments. These advancements have
the potential to benefit a wide range of industries, particu-
larly in navigation for individuals with visual impairments,
drone-assisted rescue, and hazardous object detection. Fur-
thermore, the development of the QuadTrack dataset, de-
signed for high-speed sensor motion and panoramic field-
of-view applications, fills a critical gap in available re-
sources. Aim to make both the dataset and the associated
code publicly available, we intend to accelerate progress
in the field of omnidirectional multi-object tracking, ulti-
mately advancing the safety, efficiency, and inclusivity of
automated systems in everyday life. Yet, it is inevitable that
the deep model exhibits some false positives and negatives,
and its practical deployment must account for the inherent
uncertainty of deep neural networks. Additionally, while
the technology is intended for benign applications, there ex-
ists a small risk of misuse, including potential military ap-
plications, and it may not be suitable for privacy-sensitive
environments.

4.2. Limitations and Future Work
Although OmniTrack shows strong potential in the field
of panoramic image tracking, it still has some limitations.
While it does not exhibit ID confusion when targets are
severely occluded, track loss can still occur in such sce-
narios. Future work could focus on addressing target oc-
clusion, with one promising solution being multi-sensor fu-
sion, such as integrating point cloud depth information to

mitigate occlusion. This approach could extend 2D track-
ing to 3D tracking. Additionally, employing multiple agents
that collaborate and share sensor information may enhance
tracking performance, ultimately reducing track loss caused
by occlusion and improving overall system robustness.

5. Visualization
MOT20. OmniTrack is a MOT framework specifically de-
signed for panoramic FoV, facilitating target localization
and association across distorted and panoramic FoV im-
ages. Unlike pinhole cameras, where objects tend to be
denser, panoramic images typically feature more sparsely
distributed targets. To intuitively demonstrate OmniTrack’s
performance in dense pedestrian scenarios, we visualize
its tracking results on sequence 07 of the MOT20 test
set [5], as shown in Fig. 3. The results indicate that Omni-
Track successfully tracks most targets; however, it struggles
with particularly small or heavily occluded objects, such
as the one next to ID 20. The primary challenge stems
from the limited training data in MOT20 [5], which con-
tains only 4 sequences, posing a significant challenge for
OmniTrackDet. In future work, we aim to enhance track-
ing performance in dense target scenarios.
QuadTrack & JRDB. We visualize the final tracking re-
sults on the JRDB [8] and QuadTrack datasets, as shown
in Fig. 5 and Fig. 6. In these images, red arrows high-
light instances where trajectories were lost and not correctly
tracked, while yellow arrows indicate identity confusion,
leading to ID switches. In Fig. 5, for the JRDB dataset [8],
we observe that OmniTrack accurately tracks objects, even
in scenes with a large number of people, without any ID
switches or trajectory losses. In contrast, ByteTrack [17]
and SORT [2] both exhibit trajectory losses, while OC-
SORT [3] experiences multiple ID switches. In Figure 6, for
the QuadTrack dataset, the tracking of cyclists in the fore-
ground remains intact, while OC-SORT, ByteTrack, and
SORT all suffer from trajectory loss at frame 247. These
examples demonstrate OmniTrack’s superior recall ability,
further validating the effectiveness of our feedback mecha-
nism and the FlexiTrack Instance in accurately maintaining
targets in panoramic-FoV scenarios.
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Figure 4. Examples of the established QuadTrack dataset. The QuadTrack dataset features a variety of scenes, including different campuses,
streets, and low-light environments, with machine-generated labels for each scenario. These labeled scenes demonstrate the diversity and
complexity of the dataset, offering insights into the challenges of multi-object tracking across different real-world contexts.
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Figure 5. Visualization on the public JRDB dataset [8]. The visualization compares the performance of OmniTrack, SOTA [2], Byte-
Track [17], and OC-SORT [3] methods on the JRDB validation set. The red arrows in the figures indicate instances where the trajectories
were not correctly tracked, leading to tracking losses, while yellow arrows highlight cases of track ID confusion, indicating ID switches.
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Figure 6. Visualization comparison on the established QuadTrack dataset. The visualization compares the performance of OmniTrack,
SOTA [2], ByteTrack [17], and OC-SORT [3] methods on the QuadTrack test set. The red arrows in the figures indicate instances where
the trajectories were not correctly tracked, leading to tracking losses.
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