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6. Implementation Details

STINR is optimized by using Adam optimizer with learn-
ing rate 0.001 for all datasets. We have consistently used a
four-layer INR fθ(·) for all datasets in this work. The num-
ber of hidden neurons of the INR network is set to 400 for
the human lymph node data and 200 for other ST datasets.
The depth of the encoder-decoder is set to 4 (two for en-
coder and two for decoder) for all datasets, and the number
of hidden neurons of the encoder-decoder is set to 200 for
all datasets. For gene imputation, the loss functions (5), (7),
and (8) are refined through introducing a mask to avoid cal-
culating loss for those zero-count spots. All experiments
on conducted on a PC of i5-12400F CPU and RTX 3090
GPU, with 24 GB memory. Running time is reported us-
ing the Time package in Python. All quantitative results are
rounded to three decimal places.

For gene imputation and denoising, we additionally
added the weighted TV regularization into the loss function,
which is defined as

LTV := αTV

∣∣∣∣∣w|(i)
G∑
g=1

∂fθ(V )|(i,g)
∂V |(i,g)

∣∣∣∣∣ , (10)

where αTV is a trade-off parameter, V is the input coor-
dinate matrix of INR, and fθ(·) is the INR. We set the pa-
rameter αTV to αTV = 8 × 10−4 for mouse brain datasets
and αTV = 1 × 10−4 for mouse embryo datasets when
conducting gene imputation and denoising. The TV regu-
larization uses the gradients of INR outputs w.r.t. the in-
put coordinates to enhance local smoothness of the out-
put Xrec = fθ(V ) by penalizing such gradients. Here,
w ∈ RN is a weighted parameter that assigns different local
smooth weight to different spots. Specifically, we update w
every 100 iterations by using the following paradigm:

w|(i) =

(
G∑
g=1

∂fθ(V )|(i,g)
∂V |(i,g)

+ ϵ

)−1

. (11)

After updating the weight parameter w, we fix it in the next
100 iterations until we update it again. The philosophy of
updating the weight parameter w by using the reciprocal
of the gradients is to assign larger weights to smoother re-
gions with lower gradients, while assigning lower weights
to sharper regions with larger gradients. The ϵ is a small
constant to avoid dividing by zero.

7. Dataset Details

The mouse brain coronal datasets were sourced from
10x Genomics11. We selected three “Mouse Brain Sec-
tion (Coronal)” files and used the filtered barcode ma-
trix to conduct experiments. The mouse brain single-
cell data was obtained from Mousebrain.org12 by se-
lecting the “L5 All.loom” file, which contains gene
expressions with one cell per column and one gene
per row. The mouse embryo organogenesis datasets
were sourced from STomicsDB13, and we selected the
E9.5, E10.5, and E11.5 growing stages under config-
uration E1S1 to conduct experiments. The DLPFC
datasets were downloaded from SpatialLIBD14 by se-
lecting the “h5 filtered” files under raw data section.
Additional metadata files of DLPFC were downloaded
from HumanPilot15. The single-cell reference data of
DLPFC was downloaded from GEO16 by selecting the
file “GSE144136 GeneBarcodeMatrix Annotated.mtx.gz”.
The human SCC dataset was sourced from GEO17 by se-
lecting the “GSE144240 RAW.tar” file. The human lymph
node multi-omics data was sourced from GEO18 by se-
lecting the “GSM8195494 A1 Lymph Node” file. We re-
mark that the imputation method GNTD [26] utilizes addi-
tional protein-protein interaction network datasets as auxil-
iary information for each ST dataset to perform imputation.
For easier implementation on different ST datasets and fair
comparisons, we have not considered such auxiliary infor-
mation in order to test the stand-alone reconstruction ability
of each method. Future work on combining STINR with
additional biological structure priors such as protein inter-
actions would be interesting.

8. More Results

We provide some real-world gene imputation examples by
using raw sparse gene expressions in Fig. 9. STINR per-
forms well for real gene imputation. We have also pro-
vided more qualitative gene imputation results on mouse

11https://www.10xgenomics.com/datasets
12http://mousebrain.org/adolescent/
13https://db.cngb.org/stomics/mosta/download/
14http://spatial.libd.org/spatialLIBD/
15https : / / github . com / LieberInstitute /

HumanPilot/tree/master/10X
16https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE144136
17https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE144240
18https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE263617
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brain and mouse embryo datasets in Fig. 11 and Fig. 12.
STINR more accurately recovers the spatial maps of gene
expressions. We also present more qualitative cell-type de-
convolution results on DLPFC in Fig. 10. The cell propor-
tion maps of STINR are visually more pleasant and smooth,
more robustly suggesting the cortex layer specificity of each
cell-type within the human brain. Quantitatively, STINR
obtains consistently better deconvolution accuracy by eval-
uating the layer specificity of each deconvoluted cell-type
through AUC. We have also provided more spatial domain
detection results on DLPFC in Fig. 13. STINR more accu-
rately identifies cortical layers of the human brain.

9. More Discussions
The proposed INR reconstruction is effective for gene
imputation/denoising because INR can implicitly capture
the smoothness between spots, and hence can recover the
gene expression at arbitrary input coordinate by leverag-
ing neighboring spots. We further test the robustness of
STINR’s cell-type deconvolution results w.r.t. various de-
grees of gene expression sparsity (Table 6). STINR is ro-
bust to such sparsity. We further include more cell-type de-
conv. results (Table 7 and Fig. 8) to show the superiority
of STINR. Besides, we further test a sparse Lasso penalty
loss for cell types, which could further enhance the perfor-
mance, i.e., AUC 0.887 vs. 0.880 (w/ vs. w/o Lasso) on
DLPFC. While STINR is designed for ST, it can be easily
extended to multi-omics by using multiple INRs. For con-
sistency, we have used a simple encoder-decoder structure
(same as ST) for multi-omics, and STINR already shows
competitive performances and potential under such simple
setting. We can consider more advanced multi-modal net-
work structures (e.g., cross-modality attention network or
multi-modal representation learning) to enhance STINR for
multi-omics in future research.

Our method depends on the single-cell reference matrix.
We perform a robustness test of our method w.r.t. an in-
accurate reference matrix by adding noise to the reference
matrix (Table 6). STINR is robust to an inaccurate reference
matrix. We perform a principal ablation study of INR mod-
eling by directly inputting the observed data Xs into the
MLP (i.e., discrete representation) instead of coordinates
(i.e., continuous representation). The results for gene im-
putation are MSE 0.185 vs. 0.156 (INR), which reveals the
benefits of continuous representation using INR. Since we
have used an encoder-decoder, the gene imputation result of
the reconstructed ST data Xrec is similar to that of the re-
constructed normalized ST data qκ(Z), e.g., MSE 0.156 vs.
0.158 (Xrec vs. qκ(Z)). Finally, using the reconstructed
ST data Xrec (the output of INR) for spatial domain detec-
tion is better than using the original ST data Xs, e.g., ARI
0.604 vs. 0.377 (Xrec vs. Xs). We further compare STINR
with more SOTA methods DestVI (Nat. Bio., 2022), CARD

Table 6. Robustness tests of STINR’s cell-type deconvolution re-
sults w.r.t. sparsity of gene expressions and noise perturbation of
single-cell references. Average AUC scores across eight excitatory
(Ex ) cell types in DLPFC are reported.

Original Sparsity degree Noise deviation
10% 20% 30% 40% 0.01 0.02 0.03 0.04

0.880 0.879 0.878 0.876 0.872 0.878 0.873 0.868 0.861

Table 7. Quantitative cell-type deconvolution results on different
slices of an adult mouse brain ST dataset (GSE147747). Average
AUC scores of four hippocampal cell types are reported.

Slice ID 21A 22A 23A 24A 25A 26A 27A
DestVI 0.671 0.633 0.619 0.601 0.630 0.694 0.646
CARD 0.822 0.825 0.813 0.840 0.828 0.803 0.823

STitch3D 0.878 0.859 0.836 0.855 0.789 0.835 0.848
STINR 0.892 0.863 0.864 0.859 0.860 0.858 0.884

Annotation DestVI CARD STitch3D STINR

Figure 8. Cell deconvolution on mouse brain Slice 25A. Com-
pared to DestVI (Nat. Bio., 2022), CARD (Nat. Bio., 2022), and
STitch3D (Nat. MI, 2023), STINR more accurately recovers hip-
pocampal (orange annotation) regional cell types (Ext Hpc CA).

(Nat. Bio., 2022), and STitch3D (Nat. MI, 2023) for cell-
type deconvolution (Table 7 and Fig. 8). STINR achieves
better quantitative and visual performances.



Raw KNR DT GraphST [11] GNTD [26] STINR

Figure 9. Some authentic examples of real-world gene imputation for raw sparse ST data (some relatively low expression genes in the
mouse brain coronal section 1) by different methods. STINR more clearly recovers gene expressions revealing known tissue profiles such
as hippocampus. Top to down list the genes “atp2b4”, “olfm2”, “aldh2”, “id4”, “ak5”, and “ola1”.
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Figure 10. Cell-type deconvolution results for different cell-types on DLPFC section #151673, along with the area under curve (AUC)
evaluations on top of the figures.
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Figure 11. Qualitative results for simulated ST imputation and denoising on mouse brain section 1. From top to down list the results for
imputation on gene “rtn1” with SR 0.7, imputation on gene “nrgn” with SR 0.7, denoising on gene “ppp3ca” with noise deviation 1, and
denoising on gene “ptgds” with noise deviation 1.
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Figure 12. Qualitative results for simulated ST imputation and denoising on mouse embryo organogenesis under growing stages E9.5,
E10.5, and E11.5. From top to down respectively list the results for imputation on gene “Rpl41” with SR 0.7 of three growing stages and
the results for denoising on gene “Gm42418” with noise deviation 1 of three growing stages.
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Figure 13. Spatial domain detection results by different methods on the ST data DLPFC sections #151675, #151676, and #151507-#151510.
Note that the colors of each domain do not necessarily correspond to the same detected tissues across different methods.
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